,,bana

           ,,uebc ,,sampl] #b









        ,prep>$ "u ! auspices (!

     ,brl ,au?or;y ( ,nor? ,am]ica









              ,june #bjja











            ,volume #a ( #b

        ,pages p#a-p#c & #a-ade      p#a

























































                 ,3t5ts



               ,volume #a

,sample                            ,page

,9troduc;n """""""""""""""""""""""""" #a

,"qnaire """""""""""""""""""""""""""" #e



#a4 ,spati,y ,>rang$ ,ma!matics """"" #i

  #a;a4 ,>i?metic ,pro#ms """""""""" #aa

  #a;b4 ,sy/em ( ,equ,ns """"""""""" #ag

  #a;c4 ,matrix ,multiplic,n """"""" #ai

  #a;d4 ,l;g ,divi.n """"""""""""""" #bc

  #a;e4 ,l;g ,multiplic,n """""""""" #bg

  #a;f4 ,c.ell$ ,digits """""""""""" #bi

  #a;g4 ,c.ell$ ,frac;ns """"""""""" #ca

  #a;h4 ,numb] ,l9e """""""""""""""" #cc

  #a;i4 ,a4i;n ,puzzle """"""""""""" #cg

#b4 ,algebra3 s"eal pages f a

    textbook """"""""""""""""""""""" #ci

#c4 ,calculus3 s"eal pages f a

    textbook """"""""""""""""""""""" #ii



               ,volume #b

#d4 ,t1*+ ,mat]ial """""""""""""""" #adg

                                     p#b




  #d;a4 ,ma? ,"w%op """"""""""""""" #aeg

  #d;b4 ,*apt] #f ,review """"""""" #afg

  #d;c4 ,algebra ,i ,*apt] #g ,te/  #aga

  #d;d4 ,algebra ,,ii ,*apt] #c

      ,te/ """""""""""""""""""""""" #age

  #d;e4 ,a ,sample ,>ticle """""""" #agi

#e4 ,-put]3 s"eal pages f a manual  #ahc

#f4 ,*emi/ry3 s"eal pages f a

    textbook """""""""""""""""""""" #bec




































               ,9troduc;n



  ,! ,brl ,au?or;y ( ,nor? ,am]ica

7,,bana7 is pl1s$ 6s5d y ,,uebc ,sampl]

#b4 ,x illu/rates ! draft brl code 2+

develop$ 0! ,unifi$ ,5gli% ,brl ,code

,rese>* ,project "u ! direc;n (!

,9t]n,nal ,c\ncil on ,5gli% ,brl

7,,iceb74 ,if y h n se5 ,,uebc ,sampl]

#a1 pl1se 3tact ! appropriate p]son f !

li/ ( a4resses at ! 5d ( ? ,9troduc;n4

  ,,uebc ,sampl] #b 9cludes examples (

publi%$ te*nical mat]ials4 ,f\r ( !m1

ea* #aj 3secutive pr9t pages1 >e brld 9

,,uebc & 9 ! ,,bana code 9 use 9 ,nor?

,am]ica = t subject1 e4g4 ,neme? ,code

=! algebra & calculus1 ,-put] ,code =!

-put] not,n1 & ,*emi/ry ,code =!

*emi/ry4 ,"! >e al3 "s ele;t>y >i?metic

samples2 a li/ ( examples us$ 9 h] t1*+

0,susan ,o/]haus1 a ma!matics t1*] at !

,texas ,s*ool =! ,bl & ,visu,y ,impair$2

& an example provid$ 0,jane ,corcoran1 a

,cali=nia transcrib]4

  ,at ! 2g9n+ ( ea* sample "! is a    #a




li/ (! new & *ang$ symbols y w 5c.t] 9

,,uebc4 ,ea* symbol is prec$$ 0! dot

locator 7dots #df1 #abcdef74

  ,6help ^? :o may n 2 famili> )! ?ree

pres5t ,,bana te*nical codes1 a li/ (

symbols requir$ 6r1d ! mat]ials

a3ompanies ea* sample4

  ,! samples >e organiz$ s t ! ,,uebc

v].n is pres5t$ on ! "r-h& page )!

correspond+ mat]ial 9 ! appropriate

,,bana te*nical code pres5t$ on ! left-

h& fac+ page4

  ,,uebc =mat has n be5 f9aliz$4 ,^!

examples foll[ ! same =mat us$ 0! pres5t

,,bana codes ) "o excep;n4 ,,uebc foll[s

! spac+ (! orig9al text4 ,= 9/.e1

ma!matical signs ( op],n >e spac$ or

unspac$ z !y appe> 9 pr9t4

  ,9 ! n>rative por;n ( ^! examples y w

notice t ei<t 3trac;ns f.d 9 ,5gli% ,brl

,am]ican ,edi;n 7,,ebae7 >e n us$ 9

,,uebc4 ,six >e brld lr-=-lr3 ble1 com1

dd1 ally1 to1 by2 & two >e brld )a

3trac;n3 9to & a;n4 ,all (! o!r #aha

3trac;ns1 ^wsigns & %ort=ms >e un*ang$4




  ,ea* ,,uebc symbol is unambigu\s--a

pr9t symbol is repres5t$ 0! same brl

symbol reg>d.s (! subject4 ,2c "! >e

only #fc possi# s+le cell dot -b9,ns _m

symbols h 6be made up ( two or ?ree

cells4 ,if ! brl symbol uses ! same dot

3figur,n z a 3trac;n x m/ 2 prec$$ 0a

grade "o 9dicator 6remove any ambigu;y4

,? design f1ture w make x easi] =a brl

r1d] 6"w 9dep5d5tly us+ -put] transl,n &

2 assur$ (! a3uracy ( bo? ! pr9t & brl4



    ,neme? ,r1d+ ,notes

  ,neme? numb]s >e brld 9 ! l[] "p (!

cell4 ,! numb] 9dicator is omitt$ :5

numb]s immly foll[ o!r symbols4 ,numb]

9dicators >e al omitt$ :5 numb]s >e

align$ "o abv ! o!r1 z 9 a4i;n pro#ms4

,a punctu,n 9dicator is us$ ": nec

64t+ui% signs ( punctu,n f digits4



    ,,uebc ,r1d+ ,notes

  ,,uebc uses grade "o 9dicators 6set (f

sec;ns ( text 3ta9+ symbols t wd o!rwise

2 r1d z lit]>y 3trac;ns4 ,! numb]     #c




9dicator al sets grade "o mode = unspac$

symbols or lrs t foll[ a numb]4



    ,pr9t ,copies

  ,6obta9 a pr9t copy (! examples 9

,sampl] #b or a pr9t copy ( ,sampl] #a

3tact



,! ,am]ican ,f.d,n =! ,bl

,n,nal ,lit]acy ,c5t]

,3tact3 ,fr.es ,m>y ,d',&rea

#djd-ebe-bcjc or ,,afb's ,9=m,n ,c5t]

  #hjj-bcb-edfc

;,e-mail3 _+literacy@afb.net_:



  ,6obta9 a brl copy ( ,sampl] #a 3tact



,kim ,*>lson1 ,brl ,au?or;y ( ,nor?

  ,am]ica1

#fag-igb-gbdi or ;e-mail

  _+charlsonk@perkins.pvt.k12.ma.us_:



  ,= ,canadians1 pr9t & brl copies (

,sampl] #a may 2 obta9$ 03tact+






,d>le5 ,bog>t

,! ,canadian ,n,nal ,9/itute =! ,bl

#daf-dhj-gecj or #hjj-bfh-hhah

;,e-mail3 _+bogartd@lib.cnib.ca_:



                ,"qnaire



  ,?ank y = r1d+ ,,uebc ,sampl] #b4

,,bana wants yr -;ts & has prep>$ a %ort

li/ ( "qs z a guide 76get y />t$74 ,y

may respond 9 brl1 pr9t1 on audio tape

or 0;e-mail4 ,up-to-date 9=m,n on ,,uebc

is availa# 0visit+ ! ,,bana web site at

_+http://www.brailleauthority.org_:



  .,direc;ns3 ,pl1se -plete ! foll[+

"qnaire af r1d+ "? ,sampl] #b4 ,write yr

answ]s 2l1 on a sep>ate %eet ( pap]1 or

9 an ;e-mail message4 ,s5d yr -plet$

survey to3









                                      #e




,w>r5 ,figueir$o

,l\isiana ,9/ruc;nal ,mat]ials ,c5t] =!

  ,bl

#abcj ,gov]n;t ,/reet

,baton ,r\ge1 ,,la #gjhjb

;,e-mail responses3

  _>uebc_<input@aol.com_:



  ,yr 9put w 2 use;l 6! ,,bana ,bo>d 9

/udy+ ! ,,uebc4 ,?ank y6



    ,"qs ab ,,uebc & ,o!r ,issues

#a4 ,2f y r1d ,sampl] #b1 :at 7 yr

  feel+s t[>d unify+ ! brl codes8

#b4 ,hav+ r1d "? ,sampl] #b1 h[ h yr

  id1s/feel+s *ang$ t[>d a unifi$ brl

  code8

#c4 ,:at d y re,y l ab ! ,unifi$ ,5gli%

  ,brl ,code 7,,uebc78

#d4 ,:at d y re,y 4like ab ! ,,uebc8

#e4 ,:at issues d y feel ! ,,bana ,bo>d

  %d 3sid] 9 mak+ a deci.n on adop;n (!

  ,,uebc8








#f4 ,>e yr -;ts bas$ on all six samples8

  ,yes ,no

  ,if n1 pl1se *eck ^? : >e 9clud$4

  #a #b #c #d #e #f



    ,op;nal ,backgr.d ,9=m,n

#g4 ,:at k9d ( mat]ials d y typic,y r1d

    9 brl8 ,*eck all t apply4

  a4 magaz9es

  b4 fic;n

  c4 nonfic;n

  d4 textbooks

  e4 o!r 7li/73

#h4 ,:at ma? or te*nical mat]ials d y

    r1d8 ,*eck all t apply4

  a4 textbooks

  b4 te*nical mat]ials = my job

  c4 -put] brl

  d4 *emi/ry or o!r sci5tific not,n

  e4 o!r 7li/73









                                      #g




#i4 ,:at ma? code did y le>n 9 s*ool8

  a4 upp] numb]s 7,taylor ,code7

  b4 l[] numb]s 7,neme?7

  c4 upp] numb]s 7,,bauk--,brl ,au?or;y

      (! ,unit$ ,k+dom7

  d4 no ma? code us$

#aj4 ,:5 did y le>n brl8

  a4 2f age #ah

  b4 #ah-ee ye>s ( age

  c4 #ef & abv



    ,op;nal ,p]sonal ,9=m,n

,"n3

,age3

,g5d]3

,o3up,n3

,pref]r$ ,lit]acy ,m$ium3

;,e-mail a4ress3

,a4ress3

,teleph"o3














              ,sample #a4

      ,spati,y ,>rang$ ,ma!matics



  ,? sample is transcrib$ us+ ..,!

,neme? ,brl ,code = ,ma!matics & ,sci;e

,not,n #aigb .,revi.n 7on left-h& pages7

&! ,unifi$ ,5gli% ,brl ,code z ( ,june

#bjja 7on "r-h& pages74

































                                      #i




        #a;a4 ,>i?metic ,pro#ms

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

+ plus sign

- 7#cf7 m9us sign

@* "ts sign 7cross7

.k equal sign

( op5+ p>5!sis

) clos+ p>5!sis

, 7#f7 ma!matical -ma

gggggggggggggggggggggggggggggggggggggggg




























    #a;a4 ,>i?metic ,pro#ms 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.="6 plus sign

.="- m9us sign

.="8 "ts sign 7cross7

.="7 equal sign

.="< op5+ p>5!sis

.="> clos+ p>5!sis

gggggggggggggggggggggggggggggggggggggggg





























                                     #aa




    ,add4



#28_4   8   #29_4   5   #30_4   2

       +5          +8          +7

      3333        3333        3333



#31_4   7   #32_4   3   #33_4   8

       +2          +0          +0

      3333        3333        3333



#34_4 (2+6)+5

#35_4 #2+(6+5)

#36_4 (7+3)+0

#37_4 #4+5+8



    ,f9d ! sums & di6];es4 ,use a

  calculator if nec4



#1_4   2,964   #2_4   6,587

      +5,682         +2,744

     33333333       33333333



#3_4   4,532   #4_4   4,430

      +1,607         -  726

     33333333       33333333




    ,add4



#bh4    #h   #bi4    #e   #cj4    #b

      "6#e         "6#h         "6#g

     "33333       "33333       "33333



#ca4    #g   #cb4    #c   #cc4    #h

      "6#b         "6#j         "6#j

     "33333       "33333       "33333



#cd4 "<#b "6 #f"> "6 #e

#ce4 #b "6 "<#f "6 #e">

#cf4 "<#g "6 #c"> "6 #j

#cg4 #d "6 #e "6 #h



    ,f9d ! sums & di6];es4 ,use a

  calculator if nec4



#a4    #b1ifd   #b4    #f1ehg

     "6#e1fhb        "6#b1gdd

    "333333333      "333333333



#c4    #d1ecb   #d4    #d1dcj

     "6#a1fjg        "-  #gbf

    "333333333      "333333333       #ac




#5_4   6,429   #6_4   7,000

      -5,161         -2,674

     33333333       33333333



    ,f9d ! products4



#1_4    4   #2_4    1   #3_4    2

      @*1         @*3         @*0

     33333       33333       33333



#4_4    0   #5_4    2

      @*3         @*1

     33333       33333



#6_4 #5@*4 .k #20

  #4@*5 .k n






















#e4    #f1dbi   #f4    #g1jjj

     "-#e1afa        "-#b1fgd

    "333333333      "333333333



    ,f9d ! products4



#a4    #d   #b4    #a   #c4    #b

     "8#a        "8#c        "8#j

    "33333      "33333      "33333



#d4    #j   #e4    #b

     "8#c        "8#a

    "33333      "33333



#f4 #e "8 #d "7 #bj

  #d "8 #e "7 ;n

















                                     #ae




         #a;b4 ,sy/em ( ,equ,ns

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

+ plus sign

- 7#cf7 m9us sign

.k equal sign

gggggggggggggggggggggggggggggggggggggggg



,equat+ coe6ici5ts l1ds 6! sy/em



     c1+2c2+ c3 .k #0

  -#2c1+ c2+8c3 .k #0

   #3c1+8c2+7c3 .k #0


























    #a;b4 ,sy/em ( ,equ,ns 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.=""= dot locator 72f l[] symbol on a

  l9e 0xf7

.=;;; 2g9 grade "o passage

.=; 5d grade "o passage

.=5 subscript next item

.="6 plus sign

.="- m9us sign

.="7 equal sign

gggggggggggggggggggggggggggggggggggggggg



,equat+ coe6ici5ts l1ds to ! sy/em

""=;;;

       c5#a "6 #b;c5#b "6    c5#c "7 #j

  "-#b;c5#a "6    c5#b "6 #h;c5#c "7 #j

    #c;c5#a "6 #h;c5#b "6 #g;c5#c "7 #j

""=;











                                     #ag




       #a;c4 ,matrix ,multiplic,n

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

( op5+ p>5!sis

) clos+ p>5!sis

,( multil9e op5+ p>5!sis

,) multil9e clos+ p>5!sis

@( op5+ bracket

@) clos+ bracket

, 7#f7 ma!matical -ma

; 7#ef7 subscript 9dicator

^ 7#de7 sup]script 9dicator

" 7#e7 return 6basel9e af subscript or

  sup]script

' 7#c7 prime sign

- 7#cf7 m9us sign

.k equal sign

.a ,greek alpha

gggggggggggggggggggggggggggggggggggggggg














             #a;c4 ,matrix

         ,multiplic,n 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.=""= dot locator 72f l[] symbol on a

  l9e 0xf7

.=;;; 2g9 grade "o passage

.=; 5d grade "o passage

.="< op5+ p>5!sis

.="> clos+ p>5!sis

.=.< op5+ bracket

.=.> clos+ bracket

.=,"< multil9e op5+ p>5!sis

.=,"> multil9e clos+ p>5!sis

.=5 subscript next item

.=9 sup]script next item

.=444 ellipsis

.=4]4]4 v]tical ellipsis

.=7 prime sign

.=< 2g9 -p.d item

.=> 5d -p.d item

.="- m9us sign

.="7 equal sign

.=.a ,greek alpha

gggggggggggggggggggggggggggggggggg   #ai




,= ea* fix$ ;x 9 @(a, b@), ! matrix

equ,n

  (11)



    ,(f1(x)    f2(x)    ''' f;n"(x)  ,)

    ,(f'1(x)   f'2(x)   ''' f';n"(x) ,)

    ,(''''''''''''''''''''''''''''''',)

    ,(f1^(n-1) f2^(n-1) ''' f;n^(n-1),)

    ,(  "(x)     "(x)         "(x)   ,)



    ,(.a1  ,)

    ,(.a2  ,)

    ,(''''',)

    ,(.a;n",)



    .k ,(#0 ,)

       ,(#0 ,)

       ,(''',)

       ,(#0 ,)
















,= ea* fix$ ;x 9 .<a1 ;b.>1 ! matrix

equa;n

""=;;;

  "<#aa">



    ,"<f5#a    f5#b    444 f5n    ,">

    ,"<  "<x">   "<x">       "<x">,">

    ,"<f75#a   f75#b   444 f75n   ,">

    ,"<  "<x">   "<x">       "<x">,">

    ,"<4]4]4                      ,">

    ,"<f5#a9<  f5#b9<  444 f5n9<  ,">

    ,"<  "<n"-   "<n"-       "<n"-,">

    ,"<  #a">>   #a">>       #a">>,">

    ,"<  "<x">   "<x">       "<x">,">



    ,"<.a5#a,">

    ,"<.a5#b,">

    ,"<4]4]4,">

    ,"<.a5n ,">



    "7 ,"<#j   ,">

       ,"<#j   ,">

       ,"<4]4]4,">

       ,"<#j   ,">

""=;                                 #ba




   #a;d4 ,l;g ,divi.n 9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

" 7#e7 basel9e 9dicator

o curv$ divi.n sign

, 7#f7 ma!matical -ma

- 7#cf7 m9us sign

gggggggggggggggggggggggggggggggggggggggg




































      #a;d4 ,l;g ,divi.n 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.="> curv$ divi.n sign

.="- m9us sign

.=" num]ic space

gggggggggggggggggggggggggggggggggggggggg



































                                     #bc




#4_4 ,br+ d[n ! next digit 9 ! divid5d4

  ,rep1t ^! /eps until "! >e no digits

  left 6br+ d[n4



           620 ,r"19

      333333333333333

    32o 19,859

       -19 2

      333333333333333

           65

          -64

      333333333333333

            19

           - 0

      333333333333333

            19        ,rememb] 6*eck

                      ! answ]4




















#d4 ,br+ d[n ! next digit 9 ! divid5d4

  ,rep1t ^! /eps until "! >e no digits

  left to br+ d[n4



              #fbj ,r#ai

        "3333333333333333

    #cb">  #ai1hei

         "-#ai"b

        "3333333333333333

              #fe

            "-#fd

        "3333333333333333

               #ai

             "- #j

        "3333333333333333

               #ai        ,rememb] to

                          *eck ! answ]4















                                     #be




        #a;e4 ,l;g ,multiplic,n

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

777 7#bcef1 #bcef1 #bcef1 '''7 c>ry l9e

@* "ts sign 7cross7

gggggggggggggggggggggggggggggggggggggggg



#2_4 ,multiply 0! t5s digit4



       1

    7777777

       643  ,rememb] 6regr\p4

      @*35

    3333333

      3215

     19290  #30@*643



    ,y d n h 6write ! z]o4 ,/>t ! answ]

    9 ! t5s place4












    #a;e4 ,l;g ,multiplic,n 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.="8 "ts sign 7cross7

gggggggggggggggggggggggggggggggggggggggg



#b4 ,multiply by ! t5s digit4



       #a

       #fdc  ,rememb] to regr\p4

      "8#ce

    "3333333

      #cbae

     #aibij  #cj "8 #fdc



    ,y d n h to write ! z]o4 ,/>t !

    answ] 9 ! t5s place4















                                     #bg




         #a;f4 ,c.ell$ ,digits

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

[ op5+ c.ell,n 9dicator

] clos+ c.ell,n 9dicator

- 7#cf7 m9us sign

. 7#df7 decimal po9t

gggggggggggggggggggggggggggggggggggggggg



,subtract3 #16-3.98



           9

      5  [10] 10

    1[6].[ 0][ 0]

   -  3 .  9   8

  3333333333333333

    1 2 .  0   2


















     #a;f4 ,c.ell$ ,digits 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.="- m9us sign

.=@: l9e "? previ\s item

.=4 decimal po9t

gggggggggggggggggggggggggggggggggggggggg



,subtract3 #af "- #c4ih



             #i

       #e   #aj@:#aj

     #a#f@:4 #j@: #j@:

   "-  #c  4 #i   #h

  "33333333333333333333

     #a#b  4 #j   #b

















                                     #bi




         #a;g4 ,c.ell$ ,frac;ns

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

[ op5+ c.ell,n 9dicator

] clos+ c.ell,n 9dicator

@* "ts sign 7cross7

.k equal sign

? op5+ frac;n 9dicator

# clos+ frac;n 9dicator

_? op5+ mix$ frac;n 9dicator

_# clos+ mix$ frac;n 9dicator

/ horizontal frac;n l9e

gggggggggggggggggggggggggggggggggggggggg



  ?3/8#@*1_?5/9_#



        #1      #7

        [3]    [14]

    .k ?333#@*?3333#

        [8]    [9]

        #4     #3



    .k ?7/12#






    #a;g4 ,c.ell$ ,frac;ns 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.="8 "ts sign 7cross7

.="7 equal sign

.=@: l9e "? previ\s item

gggggggggggggggggggggggggggggggggggggggg



  #c/h "8 #a#e/i



        #a        #g

        #c@:      #ad@:

    "7 "33333 "8 "333333

        #h@:      #i@:

        #d        #c



    "7 #g/ab















                                     #ca




    #a;h4 ,numb] ,l9e 9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

[ left >r[h1d

333 7#be1 #be1 #be1 '''7 horizontal %aft

  ( numb] l9e

r v]tical m>k

o "r >r[h1d

_? op5+ mix$ frac;n 9dicator

_# clos+ mix$ frac;n 9dicator

/ horizontal frac;n l9e

= miss+ numb] 7blank "ul9e7

gggggggggggggggggggggggggggggggggggggggg


























       #a;h4 ,numb] ,l9e 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.=; grade "o symbol

.=\[ left >r[h1d

.=333 horizontal %aft ( numb] l9e

.=w v]tical m>k

.=" 7at 5d ( l9e7 3t9u,n 9dicator

.=\o "r >r[h1d

.=,- da% 7us$ = blank "ul9e7

.=4 decimal po9t

gggggggggggggggggggggggggggggggggggggggg

























                                     #cc




    ,use frac;ns1 mix$ numb]s1 &

  decimals 6"n po9ts on ! numb] l9e4

  ,write ea* miss+ numb]4



          2         2_?1/10_# 2_?2/10_#

#1_4 [3333r333333333r333333333r333333333

          2.0       2.1       =



  2_?3/10_# =         2_?5/10_#

  r333333333r333333333r333333333

  2.3       2.4       2.5



  2_?6/10_# =         2_?8/10_#

  r333333333r333333333r333333333

  2.6       =         2.8



  2_?9/10_# 3         3_?1/10_#

  r333333333r333333333r333333333

  2.9       3.0       =



  3_?2/10_#

  r333333333o

  3.2








    ,use frac;ns1 mix$ numb]s1 &

  decimals to "n po9ts on ! numb] l9e4

  ,write ea* miss+ numb]4



          #b      #b#a/aj #b#b/aj

#a4 ;\[333w3333333w3333333w3333333"

          #b4j    #b4a    ,-



  #b#c/aj ,-      #b#e/aj #b#f/aj

  w3333333w3333333w3333333w3333333"

  #b4c    #b4d    #b4e    #b4f



  ,-      #b#h/aj #b#i/aj #c

  w3333333w3333333w3333333w3333333"

  ,-      #b4h    #b4i    #c4j



  #c#a/aj #c#b/aj

  w3333333w333333\o

  ,-      #c4b











                                     #ce




          #a;i4 ,a4i;n ,puzzle

             9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

,' 7#f1 #c7 transcrib]'s note 9dicator

+ plus sign

- 7#cf7 m9us sign

gggggggggggggggggggggggggggggggggggggggg



  ,ea* lr 9 ^! pro#ms repres5ts a di6]5t

digit4



#1_4 ,:at is ! value ( ;,c_8

#2_4 ,:at is ! value ( ;,d_8

      ,',lrs 9 ! pro#ms 2l >e capitaliz$

    9 pr9t4,'



    8789    deff

    3ba7   -e2f6

    482a  3333333

   +7ab5    1997

  3333333

   2c287






     #a;i4 ,a4i;n ,puzzle 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.="6 plus sign

.="- m9us sign

gggggggggggggggggggggggggggggggggggggggg



,ea* lr 9 ^! problems repres5ts a di6]5t

digit4



#a4 ,:at is ! value ( ;,c8

#b4 ,:at is ! value ( ;,d8



     #h#g#h#i     ,d,e,f,f

     #c,b,a#g   "-,e#b,f#f

     #d#h#b,a  "33333333333

   "6#g,a,b#e     #a#i#i#g

  "33333333333

   #b,c#b#h#g











                                     #cg

























































              ,sample #b4

                ,algebra



  ,? sample is transcrib$ us+ ..,!

,neme? ,brl ,code = ,ma!matics & ,sci;e

,not,n #aigb .,revi.n 7on left-h& pages7

&! ,unifi$ ,5gli% ,brl ,code z ( ,june

#bjja 7on "r-h& pages74

































                                     #ci




    ,algebra ,sample 9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

^ 7#de7 2g9 sup]script

" 7#e7 return 6basel9e af sup]script

? 2g9 frac;n

/ horizontal frac;n l9e

# 5d frac;n

( op5+ p>5!sis

) clos+ p>5!sis

@( op5+ bracket

@) clos+ bracket

+ plus sign

- 7#cf7 m9us sign

+- plus or m9us sign

-+ m9us or plus sign

* "ts sign 7dot7

_/ sla%

_l id5t;y sign 7#c horizontal b>s7

.k equal sign

/.k n equal sign

@# a/]isk

, 7#f7 ma!matical -ma

gggggggggggggggggggggggggggggggggggggggg




       ,algebra ,sample 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.=; grade "o symbol

.=;;; 2g9 grade "o passage

.=; 72f a space7 5d grade "o passage

.=""= dot locator 72f l[] symbol on a

  l9e 0xf7



.=,,, 2g9 capitaliz$ passage

.=, 72f a space7 5d capitaliz$ passage

.=.1 italic ^w

.=.7 2g9 italic passage

.=. 72f a space7 5d italic passage

.=^1 bold ^w

.=^7 2g9 bold passage

.=^ 72f a space7 5d bold passage



.=( 2g9 frac;n

.=./ frac;n l9e

.=) 5d frac;n

.=9 sup]script next item

.=< 2g9 -p.d item

.=> 5d -p.d item

                                     #da

























































    ,,uebc ,symbols 73t47



.="< op5+ p>5!sis

.="> clos+ p>5!sis

.=.< op5+ bracket

.=.> clos+ bracket

.=4 decimal po9t

.="6 plus sign

.="- m9us sign

.=_6 plus or m9us sign

.=_- m9us or plus sign

.="4 "ts sign 7dot7

.="7 equal sign

.="7@: n equal sign

.=_= equival5t sign 7#c horizontal l9es7

.=_/ sla%

.="9 a/]isk

gggggggggggggggggggggggggggggggggggggggg













                                     #dc




       #3-4 ,,special ,,products     #dg



  ,"! >e c]ta9 special products : o3ur s

frequ5tly 9 algebra t !y h be5

classifi$4 ,^! >e giv5 2l4 ..,! lrs 9 !

=mulas may /& = any algebraic .expres.n4

,ea* is a direct result (! axioms 9

,*apt] #2_4 ,! r1d] %d n only v]ify ea*

0actu,y c>ry+ \ ! /eps & giv+ ! r1sons1

b al memorize !m1 s t he c recognize bo?

! product f ! factors &! factors f !

product4

  (3-11) a(x+y) _l ax+ay_4

  (3-12) (x+y)(x-y) _l x^2"-y^2_4

  (3-13) @# (x+-y)^2 _l x^2"+-2xy+y^2_4

      @# ,! sign +- is r1d 8plus or

    m9us40 ,if ! upp] (l[]) sign is us$

    9 ! left memb]1 x is al us$ 9 ! "r1

    s t (x+-y)^2 _l x^2"+-2xy+y^2 m1ns
















       #c-#d ,,,special products,    #dg



,"! >e c]ta9 special products : o3ur s

frequ5tly 9 algebra t !y h be5

classifi$4 ,^! >e giv5 2l4 .7,! lrs 9 !

=mulas may /& = any algebraic expres.n4.

,ea* is a direct result ( ! axioms 9

,*apt] #b4 ,! r1d] %d n only v]ify ea*

by actually c>ry+ \ ! /eps & giv+ !

r1sons1 b al memorize !m1 s t he c

recognize bo? ! product f ! factors & !

factors f ! product4

""=;;;

  "<#c-#aa"> a"<x "6 y"> _= ax "6 ay4

  "<#c-#ab"> "<x "6 y">"<x "- y">

    _= x9#b "- y9#b4

  "<#c-#ac">"9 "<x _6 y">9#b

    _= x9#b _6 #bxy "6 y9#b4

""=;

      "9 ,! sign _6 is r1d 8plus or

    m9us40 ,if ! upp] "<l[]"> sign is

    us$ 9 ! left memb]1 x is al us$ 9 !

    "r1 s t ;;;"<x _6 y">9#b

    _= x9#b _6 #bxy "6 y9#b; m1ns

                                     #de




    (x+y)^2 _l x^2"+2xy+y^2 &       a#dg

    (x-y)^2 _l x^2"-2xy+y^2_4

  (3-14) (x+a)(x+b) _l x^2"+(a+b)x+ab_4

  (3-15)

    (ax+b)(cx+d) _l acx^2"+(ad+bc)x+bd_4

  (3-16)

    (x+-y)^3

    _l x^3"+-3x^2"y+3xy^2"+-y^3_4

  (3-17)

    (x+-y)(x^2"-+xy+y^2") _l x^3"+-y^3_4

  ,! r1d] %d det]m9e : (! abv =mulas is

us$ 9 ! foll[+ illu/r,ns4

-------------------------------------#dh

  ,,illu/r,n #1_4

  (2x^2"-3y)(2x^2"+3y)

    _l (2x^2")^2"-(3y)^2

    _l #4x^4"-9y^2_4




















    ;;;"<x "6 y">9#b                a#dg

    _= x9#b "6 #bxy "6 y9#b; &

    ;;;"<x "- y">9#b

    _= x9#b "- #bxy "6 y9#b4;

""=;;;

  "<#c-#ad"> "<x "6 a">"<x "6 b">

    _= x9#b "6 "<a "6 b">x "6 ab4

  "<#c-#ae"> "<ax "6 b">"<cx "6 d">

    _= acx9#b "6 "<ad "6 bc">x "6 bd4

  "<#c-#af"> "<x _6 y">9#c

    _= x9#c _6 #cx9#by "6 #cxy9#b

    _6 y9#c4

  "<#c-#ag"> "<x _6 y">

    "<x9#b _- xy "6 y9#b">

    _= x9#c _6 y9#c4

""=;

  ,! r1d] %d det]m9e : ( ! abv =mulas is

us$ 9 ! foll[+ illu/ra;ns4

-------------------------------------#dh

  ^7,illu/ra;n #a4^

  ;;;"<#bx9#b "- #cy">"<#bx9#b "6 #cy">

    _= "<#bx9#b">9#b "- "<#cy">9#b

    _= #dx9#d "- #iy9#b4;



                                     #dg




  ,,illu/r,n #2_4                   a#dh

  (x+2)(x+5)

    _l x^2"+(2+5)x+10

    _l x^2"+7x+10_4



  ,,illu/r,n #3_4

  (3x+4y)(2x-3y)

    _l #6x^2"+(-9+8)xy-12y^2

    _l #6x^2"-xy-12y^2_4



  ,,illu/r,n #4

  (x+y-1)^3

    _l @((x+y)-1@)^3

    _l (x+y)^3"-3(x+y)^2"+3(x+y)-1

    _l x^3"+3x^2"y+3xy^2"+y^3"-3x^2"-6xy

      -#3y^2"+3x+3y-1_4

,"h (x+y) is 3sid]$ f/ z "o t]m4




















  ^7,illu/ra;n #b4^                 a#dh

  ;;;"<x "6 #b">"<x "6 #e">

    _= x9#b "6 "<#b "6 #e">x "6 #aj

    _= x9#b "6 #gx "6 #aj4;



  ^7,illu/ra;n #c4^

  ;;;"<#cx "6 #dy">"<#bx "- #cy">

    _= #fx9#b "6 "<"-#i "6 #h">xy

      "- #aby9#b

    _= #fx9#b "- xy "- #aby9#b4;



  ^7,illu/ra;n #d^

  ;;;"<x "6 y "- #a">9#c

    _= .<"<x "6 y"> "- #a.>9#c

    _= "<x "6 y">9#c "- #c"<x "6 y">9#b

      "6 #c"<x "6 y"> "- #a

    _= x9#c "6 #cx9#by "6 #cxy9#b

      "6 y9#c "- #cx9#b "- #fxy

      "- #cy9#b "6 #cx "6 #cy "- #a4;

,"h "<;x "6 ;y"> is 3sid]$ f/ z "o t]m4









                                     #di




  ,,illu/r,n #5                     b#dh

  (3x+2y)(9x^2"-6xy+4y^2")

    _l (3x+2y)

      @((3x)^2"-(3x)(2y)+(2y)^2"@)

    _l (3x)^3"+(2y)^3

    _l #27x^3"+8y^3_4



                ,,pro#ms



    ,f9d ! foll[+ products4

#1_4 #2a(3x-4y)

#2_4 -#3x(2x+7y)

#3_4 -#7xy(3x^2"+4y)

#4_4 #4x^2"yz(z^2"+xy+yz)

#5_4 (2x-3y)(2x+3y)

#6_4 (7x+5y^2")(7x-5y^2")

#7_4 (x+2y)(x-2y)(x^2"+4y^2")

#8_4 (x-3)^2

#9_4 (2x+7y)^2

#10_4 (3x^2"y-5z^2")^2

#11_4 (x-2)(x-5)












  ^7,illu/ra;n #e^                  b#dh

  ;;;"<#cx "6 #by">

      "<#ix9#b "- #fxy "6 #dy9#b">

    _= "<#cx "6 #by">

      .<"<#cx">9#b "- "<#cx">"<#by">

      "6 "<#by">9#b.>

    _= "<#cx">9#c "6 "<#by">9#c

    _= #bgx9#c "6 #hy9#c4;



               ,,problems



    ,f9d ! foll[+ products4

""=;;;

#a4 #b;a"<#cx "- #dy">

#b4 "-#cx"<#bx "6 #gy">

#c4 "-#gxy"<#cx9#b "6 #dy">

#d4 #dx9#byz"<z9#b "6 xy "6 yz">

#e4 "<#bx "- #cy">"<#bx "6 #cy">

#f4 "<#gx "6 #ey9#b">"<#gx "- #ey9#b">

#g4 "<x "6 #by">"<x "- #by">

  "<x9#b "6 #dy9#b">

#h4 "<x "- #c">9#b

#i4 "<#bx "6 #gy">9#b

#aj4 "<#cx9#by "- #ez9#b">9#b

#aa4 "<x "- #b">"<x "- #e">          #ea




#12_4 (2x+3)(x-5)                   c#dh

#13_4 (xy^2"-z^2"w)^2

#14_4 (?1/2#x+?2/3#y)^2

#15_4 (4x-3y)(7x+3y)

#16_4 @((x+1)-z@)@((x+1)+z@)

#17_4 (2x+3y+3)(2x+3y-3)

#18_4 (2x+3y+4z)^2

#19_4 (x-2y-z)^2

#20_4 (2a+b)^3

#21_4 (x+2)(x^2"-2x+4)

#22_4 (x-3)(x^2"+3x+9)

#23_4 (x+3y+2z-4w)(x+3y-2z+4w)

#24_4 (4x-2y-3z+3w)(4x+2y+3z+3w)

#25_4 (a-b+c-d)^2

#26_4 (2a+3b-c-4d)^2

#27_4 @(2(x+2y)-3@)@(2(x+2y)+4@)

#28_4 @(2(x-3y)+5@)@(3(x-3y)-2@)

#29_4 (2x+3y)^3

#30_4 (5x-3y)^3
















#ab4 "<#bx "6 #c">"<x "- #e">       c#dh

#ac4 "<xy9#b "- z9#bw">9#b

#ad4 "<#a/bx "6 #b/cy">9#b

#ae4 "<#dx "- #cy">"<#gx "6 #cy">

#af4 .<"<x "6 #a"> "- z.>

  .<"<x "6 #a"> "6 z.>

#ag4 "<#bx "6 #cy "6 #c">

  "<#bx "6 #cy "- #c">

#ah4 "<#bx "6 #cy "6 #dz">9#b

#ai4 "<x "- #by "- z">9#b

#bj4 "<#b;a "6 b">9#c

#ba4 "<x "6 #b">"<x9#b "- #bx "6 #d">

#bb4 "<x "- #c">"<x9#b "6 #cx "6 #i">

#bc4 "<x "6 #cy "6 #bz "- #dw">

  "<x "6 #cy "- #bz "6 #dw">

#bd4 "<#dx "- #by "- #cz "6 #cw">

  "<#dx "6 #by "6 #cz "6 #cw">

#be4 "<a "- b "6 c "- d">9#b

#bf4 "<#b;a "6 #c;b "- c "- #d;d">9#b

#bg4 .<#b"<x "6 #by"> "- #c.>

  .<#b"<x "6 #by"> "6 #d.>

#bh4 .<#b"<x "- #cy"> "6 #e.>

  .<#c"<x "- #cy"> "- #b.>

#bi4 "<#bx "6 #cy">9#c

#cj4 "<#ex "- #cy">9#c               #ec




      #3-5 ,,factors ,,& ,,factor+   #di



  ,! process ( factor+ an algebraic

expres.n is simil> 6t ( f9d+ ! factors (

a -posite numb]4 ,recall ! 4cus.n (

prime & -posite 9teg]s 9 ,>ticle #1-4_4

,? process1 : is usu,y re/rict$ at ?

ele;t>y /age 6factor+ polynomials )

r,nal coe6ici5ts & 6factors -pletely

free f irr,nal numb]s1 is frequ5tly

p]=m$ 0rev]s+ ! processes 3sid]$ 9

,>ticle #3-4_4 ,s* a factoriz,n is

3sid]$ -plete :5 ea* algebraic factor is

a .prime .factor2 t is1 an algebraic

expres.n t _c 2 factor$ )\t violat+ !

abv re/ric;ns4

  ,! m -mon types ( factor+ >e illu/rat$

2l4 ,note ! import.e & applic,n (!

4tributive axioms 9 ? 4cus.n4



  ,,example #1_4 ,factor

#2ax^2"-4ay^2"+8a^2"x_4










""=;                                d#dh

-------------------------------------#di

      #c-#e ,,,factors & factor+,



,! process ( factor+ an algebraic

expres.n is simil> to t ( f9d+ ! factors

( a composite numb]4 ,recall ! 4cus.n (

prime & composite 9teg]s 9 ,>ticle

#a-#d4 ,? process1 : is usually re/rict$

at ? ele;t>y /age to factor+ polynomials

) ra;nal coe6ici5ts & to factors

completely free f irra;nal numb]s1 is

frequ5tly p]=m$ by rev]s+ ! processes

3sid]$ 9 ,>ticle #c-#d4 ,s* a

factoriza;n is 3sid]$ complete :5 ea*

algebraic factor is a .7prime factor2. t

is1 an algebraic expres.n t _c 2 factor$

)\t violat+ ! abv re/ric;ns4

  ,! m common types ( factor+ >e

illu/rat$ 2l4 ,note ! import.e &

applica;n ( ! 4tributive axioms 9 ?

4cus.n4



  ^7,example #a4^ ,factor

#b;ax9#b "- #d;ay9#b "6 #h;a9#bx4    #ee




  .,solu;n4 ,! polynomial 9 ?       a#di

pro#m has #2a z a -mon factor4

  #2ax^2"-4ay^2"+8a^2"x

    _l #2a(x^2"-2y^2"+4ax)_4



  ,,example #2_4 ,factor

x(a+2b)-3y(a+2b)_4

  .,solu;n4 ,ea* (! two expres.ns has !

-mon t]m (a+2b)_4 ,"!=e1

  x(a+2b)-3y(a+2b) _l (x-3y)(a+2b)_4



  ,,example #3_4 ,factor

(4x^2"_/y^2")-(9a-b)^2_4

  .,solu;n4 ,? expres.n is ! di6];e 2t

two p]fect squ>es4

  ?4x^2"/y^2"#-(9a-b)^2

    _l (?2x/y#)^2"-(9a-b)^2

    _l @(?2x/y#+(9a-b)@)

      @(?2x/y#-(9a-b)@)

    _l (?2x/y#+9a-b)(?2x/y#-9a+b)_4



  ,,example #4_4 ,factor










  .1,solu;n4 ,! polynomial 9 ?      a#di

problem has #b;a z a common factor4

  ;;;#b;ax9#b "- #d;ay9#b "6 #h;a9#bx

    _= #b;a"<x9#b "- #by9#b "6 #d;ax">4;



  ^7,example #b4^ ,factor

x"<a "6 #b;b"> "- #cy"<a "6 #b;b">4

  .1,solu;n4 ,ea* ( ! two expres.ns has

! common t]m "<a "6 #b;b">4 ,"!=e1

  ;;;x"<a "6 #b;b"> "- #cy"<a "6 #b;b">

    _= "<x "- #cy">"<a "6 #b;b">4;



  ^7,example #c4^ ,factor

"<#dx9#b_/y9#b"> "- "<#i;a "- b">;9#b4

  .1,solu;n4 ,? expres.n is ! di6];e 2t

two p]fect squ>es4

  ;;;(#dx9#b./y9#b) "- "<#i;a "- b">9#b

    _= "<(#bx./y)">9#b

      "- "<#i;a "- b">9#b

    _= .<(#bx./y) "6 "<#i;a "- b">.>

      .<(#bx./y) "- "<#i;a "- b">.>

    _= "<(#bx./y) "6 #i;a "- b">

      "<(#bx./y) "- #i;a "6 b">4;



  ^7,example #d4^ ,factor            #eg




#9x^2"-30xy+25y^2_4                 b#di

  .,solu;n4 ,? algebraic expres.n is a

p]fect squ>e4

  #9x^2"-30xy+25y^2 _l (3x-5y)^2_4



  ,,example #5_4 ,factor

#27x^3"+(8_/y^3")_4

  .,solu;n4 ,! algebraic expres.n is !

sum ( two cubes4 ,acly1

  #27x^3"+?8/y^3"#

    _l (3x+?2/y#)

    (9x^2"-?6x/y#+?4/y^2"#)_4

-------------------------------------#ej

  ,,example #6_4 ,factor

#12x^2"+7xy-10y^2_4

  .,solu;n4 ,? trinomial 9 ! =m (

,eq4 (3-15) is factor$ 0trial & ]ror4 ,!

result w 2 9 ! =m (ax+by)(cx+dy), ":

ac .k #12, bd .k -#10, & ad+bc .k #7_4

,"h ;a & ;c >e bo? plus1 & ;b & ;d >e

di6]5t 9 sign4 ,! correct -b9,n1 we f9d1

is










#ix9#b "- #cjxy "6 #bey9#b4         b#di

  .1,solu;n4 ,? algebraic expres.n is a

p]fect squ>e4

  ;;;#ix9#b "- #cjxy "6 #bey9#b

    _= "<#cx "- #ey">9#b4;



  ^7,example #e4^ ,factor

#bgx9#c "6 "<#h_/y9#c">4

  .1,solu;n4 ,! algebraic expres.n is !

sum ( two cubes4 ,acly1

  ;;;#bgx9#c "6 (#h./y9#c)

    _= "<#cx "6 (#b./y)">

    "<#ix9#b "- (#fx./y)

    "6 (#d./y9#b)">4;

-------------------------------------#ej

  ^7,example #f4^ ,factor

#abx9#b "6 #gxy "- #ajy9#b4

  .1,solu;n4 ,? trinomial 9 ! =m (

,eq4 "<#c-#ae"> is factor$ by trial &

]ror4 ,! result w 2 9 ! =m

"<ax "6 by">"<cx "6 dy">1 ": ;ac "7 #ab1

bd "7 "-#aj1 & ad "6 bc "7 #g4 ,"h a &

;c >e bo? plus1 & ;b & ;d >e di6]5t 9

sign4 ,! correct comb9a;n1 we f9d1 is

                                     #ei




#12x^2"+7xy-10y^2                   a#ej

_l (4x+5y)(3x-2y)_4



  ,,example #7_4 ,factor

#6x^4"+7x^2"y^2"-3y^4_4

  .,solu;n4 ,? is ! same type z ,example

#6_4

  #6x^4"+7x^2"y^2"-3y^4

    _l (3x^2"-y^2")(2x^2"+3y^2")_4

,al? ! f/ factor on ! "r is ! di6];e (

two squ>es1 x _c 2 factor$ fur!r1 = s*

factoriz,n wd 9troduce irr,nal

quantities4



                ,,pro#ms



    ,factor ! foll[+ -pletely4

#1_4 #4x-20

#2_4 #10x+15yz

#3_4 #3y^2"-9y

#4_4 #4x^3"y^2"+6x^2"y^3

#5_4 xy^2"z^3"-3x^2"yz^2"+5xy^3"z^2










#abx9#b "6 #gxy "- #ajy9#b          a#ej

_= "<#dx "6 #ey">"<#cx "- #by">4



  ^7,example #g4^ ,factor

#fx9#d "6 #gx9#by9#b "- #cy9#d4

  .1,solu;n4 ,? is ! same type z

,example #f4

  ;;;#fx9#d "6 #gx9#by9#b "- #cy9#d

    _= "<#cx9#b "- y9#b">

    "<#bx9#b "6 #cy9#b">4;

,al? ! f/ factor on ! "r is ! di6];e (

two squ>es1 x _c 2 factor$ fur!r1 = s*

factoriza;n wd 9troduce irra;nal

quantities4



               ,,problems



    ,factor ! foll[+ completely4

""=;;;

#a4 #dx "- #bj

#b4 #ajx "6 #aeyz

#c4 #cy9#b "- #iy

#d4 #dx9#cy9#b "6 #fx9#by9#c

#e4 xy9#bz9#c "- #cx9#byz9#b

  "6 #exy9#cz9#b                     #fa




#6_4 a^2"b^3"c^4"-a^3"b^4"c^5       b#ej

  "+2a^2"b^4"c^4

#7_4 #3y(2x+5)-4x(2x+5)

#8_4 #3y(4-y)+6x^2"(4-y)

#9_4 #2z^2"(x+3y)-6xz(x+3y)

#10_4 #3x(3-2y)-2xy(3-2y)

#11_4 #9-a^2

#12_4 #16x^2"-9y^2

#13_4 #225a^8"-64b^2

#14_4 (c^6"_/d^8")-121

#15_4 x^3"y^4"-25xd^6

#16_4 #0.01x^4"-196y^8

#17_4 (x+2y)^2"-z^2

#18_4 (3x-2y)^2"-25z^2

#19_4 (a+b)^2"-(c+d)^2

#20_4 #9(2x-y)^2"-4(2a+b)^2

#21_4 #81(4x-3y)^2"-25(3z+w)^2

#22_4 x^2"+6x+9-(y^2"+4y+4)

#23_4 x^2"-8x+16
















#f4 a9#b;b9#c;c9#d                  b#ej

  "- a9#c;b9#d;c9#e "6 #b;a9#b;b9#d;c9#d

#g4

  #cy"<#bx "6 #e"> "- #dx"<#bx "6 #e">

#h4 #cy"<#d "- y"> "6 #fx9#b"<#d "- y">

#i4

  #bz9#b"<x "6 #cy"> "- #fxz"<x "6 #cy">

#aj4

  #cx"<#c "- #by"> "- #bxy"<#c "- #by">

#aa4 #i "- a9#b

#ab4 #afx9#b "- #iy9#b

#ac4 #bbe;a9#h "- #fd;b9#b

#ad4 "<c9#f_/d9#h"> "- #aba

#ae4 x9#cy9#d "- #bexd9#f

#af4 #j4jax9#d "- #aify9#h

#ag4 "<x "6 #by">9#b "- z9#b

#ah4 "<#cx "- #by">9#b "- #bez9#b

#ai4 "<a "6 b">9#b "- "<c "6 d">9#b

#bj4  #i"<#bx "- y">9#b

  "- #d"<#b;a "6 b">9#b

#ba4 #ha"<#dx "- #cy">9#b

  "- #be"<#cz "6 w">9#b

#bb4 x9#b "6 #fx "6 #i

  "- "<y9#b "6 #dy "6 #d">

#bc4 x9#b "- #hx "6 #af              #fc




#24_4 #4a^2"-12ab+9b^2              c#ej

#25_4 #66xy+9x^2"y^2"+121

#26_4 #2x^3"-28x^2"+98x

#27_4 #5z^2"-30wz+45w^2

#28_4 x^2n"+2x^n"y^n"+y^2n

#29_4 (3-x)^2"+8(3-x)+16

#30_4 #25-30(2x-3y)+9(2x-3y)^2

#31_4 a^3"-8

#32_4 #1+(8_/x^9")

#33_4 #8x^6n"+27y^3m

#34_4 x^3"-(y^3"_/64)

#35_4 #27(x-y)^3"-8(x+y)^3

#36_4 #5(a-2b)^3"-625(a-2b)^3

#37_4 x^2"-7x+12

#38_4 y^2"-2y-8

#39_4 a^2"b^2"-ab-20

#40_4 #2x^2"+8x+6

#41_4 #35x^2"-24x+4

#42_4 #3y^2"-y-10

#43_4 #6a^2"+7a-20

#44_4 #2x^2"-23xy-39y^2












#bd4 #d;a9#b "- #ab;ab "6 #i;b9#b   c#ej

#be4 #ffxy "6 #ix9#by9#b "6 #aba

#bf4 #bx9#c "- #bhx9#b "6 #ihx

#bg4 #ez9#b "- #cjwz "6 #dew9#b

#bh4 x9<#bn> "6 #bx9ny9n "6 y9<#bn>

#bi4 "<#c "- x">9#b "6 #h"<#c "- x">

  "6 #af

#cj4 #be "- #cj"<#bx "- #cy">

  "6 #i"<#bx "- #cy">9#b

#ca4 a9#c "- #h

#cb4 #a "6 "<#h_/x9#i">

#cc4 #hx9<#fn> "6 #bgy9<#cm>

#cd4 x9#c "- "<y9#c_/#fd">

#ce4 #bg"<x "- y">9#c "- #h"<x "6 y">9#c

#cf4 #e"<a "- #b;b">9#c

  "- #fbe"<a "- #b;b">9#c

#cg4 x9#b "- #gx "6 #ab

#ch4 y9#b "- #by "- #h

#ci4 a9#b;b9#b "- ab "- #bj

#dj4 #bx9#b "6 #hx "6 #f

#da4 #cex9#b "- #bdx "6 #d

#db4 #cy9#b "- y "- #aj

#dc4 #f;a9#b "6 #g;a "- #bj

#dd4 #bx9#b "- #bcxy "- #ciy9#b

                                     #fe




#45_4 (x+y)^2"-7(x+y)+10             #ea

#46_4 (y+z)^2"+(y+z)-42

#47_4 #2(2x+y)^2"-(2x+y)-10

#48_4 #6(x+y)^2"+5(x+y)(y+z)-6(y+z)^2

#49_4 #12(a+b)^2"-14(a+b)(c+d)-10(c+d)^2

#50_4 #4(x-2)^2"+5(x-2)(y+4)-21(y+4)^2



  ,"! >e _m algebraic expres.ns :1

0prop] gr\p+1 c 2 put 96"o (! =ms 9 !

previ\s examples & !n factor$4



  ,,example #8_4 ,factor ax-ay-bx+by_4

  .,solu;n4 ,if1 0! associative axiom1

we gr\p ! f/ two t]ms tgr1 &! la/ two

tgr1 & (use ! 4tributive
























#de4                                 #ea

  "<x "6 y">9#b "- #g"<x "6 y"> "6 #aj

#df4 "<y "6 z">9#b "6 "<y "6 z"> "- #db

#dg4 #b"<#bx "6 y">9#b "- "<#bx "6 y">

  "- #aj

#dh4 #f"<x "6 y">9#b

  "6 #e"<x "6 y">"<y "6 z">

  "- #f"<y "6 z">9#b

#di4 #ab"<a "6 b">9#b

  "- #ad"<a "6 b">"<c "6 d">

  "- #aj"<c "6 d">9#b

#ej4 #d"<x "- #b">9#b

  "6 #e"<x "- #b">"<y "6 #d">

  "- #ba"<y "6 #d">9#b

""=;



  ,"! >e _m algebraic expres.ns :1 by

prop] gr\p+1 c 2 put 9to "o ( ! =ms 9 !

previ\s examples & !n factor$4



  ^7,example #h4^ ,factor

ax "- ay "- bx "6 by4

  .1,solu;n4 ,if1 by ! associative

axiom1 we gr\p ! f/ two t]ms tgr1 & !

la/ two tgr1 & "<use ! 4tributive    #fg




axiom) factor \ ! -mon t]m1 we      a#ea

trans=m ! expres.n 96! =m ( ,example

#2_4

  ax-ay-bx+by

    _l a(x-y)-b(x-y)

    _l (x-y)(a-b)_4



  ,,example #9_4 ,factor

#4x^3"-12x^2"-x+3_4

  .,solu;n4 ,ag we gr\p ! f/ two t]ms &!

la/ two t]ms4

  #4x^3"-12x^2"-x+3

    _l #4x^2"(x-3)-(x-3)

    _l (x-3)(4x^2"-1)

    _l (x-3)(2x+1)(2x-1)_4

,9 bo? ^! examples we cd h gr\p$ ! f/ &

?ird1 &! second & f\r? t]ms1 & obta9$ !

same result4



  ,,example #10_4 ,factor

#4x^2"-12xy+9y^2"+4x-6y-3_4

  .,solu;n4 ,if we gr\p ! f/ ?ree t]ms1

! solu;n 2comes cle>4








axiom"> factor \ ! common t]m1 we   a#ea

trans=m ! expres.n 9to ! =m ( ,example

#b4

  ;;;ax "- ay "- bx "6 by

    _= a"<x "- y"> "- b"<x "- y">

    _= "<x "- y">"<a "- b">4;



  ^7,example #i4^ ,factor

#dx9#c "- #abx9#b "- ;x "6 #c4

  .1,solu;n4 ,ag we gr\p ! f/ two t]ms &

! la/ two t]ms4

  ;;;#dx9#c "- #abx9#b "- x "6 #c

    _= #dx9#b"<x "- #c"> "- "<x "- #c">

    _= "<x "- #c">"<#dx9#b "- #a">

    _= "<x "- #c">"<#bx "6 #a">

      "<#bx "- #a">4;

,9 bo? ^! examples we cd h gr\p$ ! f/ &

?ird1 & ! second & f\r? t]ms1 & obta9$ !

same result4



  ^7,example #aj4^ ,factor #dx9#b

"- #abxy "6 #iy9#b "6 #dx "- #fy "- #c4

  .1,solu;n4 ,if we gr\p ! f/ ?ree t]ms1

! solu;n 2comes cle>4

                                     #fi




  #4x^2"-12xy+9y^2"+4x-6y-3         b#ea

    _l (2x-3y)^2"+2(2x-3y)-3

    _l @((2x-3y)+3@)@((2x-3y)-1@)

    _l (2x-3y+3)(2x-3y-1)_4



  ,,example #11_4 ,factor

x^4"+2x^2"y^2"+9y^4_4

  .,solu;n4 ,if ! coe6ici5t (! second

t]m 7 #6, ! expres.n wd 2 a p]fect

squ>e4 ,"!=e1 if we add (and subtract)

#4x^2"y^2, \r solu;n 2comes evid5t4

  x^4"+2x^2"y^2"+9y^4

    _l x^4"+6x^2"y^2"+9y^4"-4x^2"y^2

    _l (x^2"+3y^2")^2"-(2xy)^2

    _l (x^2"+3y^2"+2xy)

      (x^2"+3y^2"-2xy)_4






















  ;;;#dx9#b "- #abxy "6 #iy9#b      b#ea

      "6 #dx "- #fy "- #c

    _= "<#bx "- #cy">9#b

      "6 #b"<#bx "- #cy"> "- #c

    _= .<"<#bx "- #cy"> "6 #c.>

      .<"<#bx "- #cy"> "- #a.>

    _= "<#bx "- #cy "6 #c">

      "<#bx "- #cy "- #a">4;



  ^7,example #aa4^ ,factor

x;9#d "6 #bx9#by9#b "6 #iy9#d4

  .1,solu;n4 ,if ! coe6ici5t ( ! second

t]m 7 #f1 ! expres.n wd 2 a p]fect

squ>e4 ,"!=e1 if we add "<& subtract">

#dx9#by9#b1 \r solu;n 2comes evid5t4

  ;;;x9#d "6 #bx9#by9#b "6 #iy9#d

    _= x9#d "6 #fx9#by9#b "6 #iy9#d

      "- #dx9#by9#b

    _= "<x9#b "6 #cy9#b">9#b

      "- "<#bxy">9#b

    _= "<x9#b "6 #cy9#b "6 #bxy">

      "<x9#b "6 #cy9#b "- #bxy">4;





                                     #ga




                ,,pro#ms             #eb



    ,factor ! foll[+ expres.ns4

#1_4 ax-ay-by+bx

#2_4 ax-2ay-6by+3bx

#3_4 x^3"-2x^2"+4x-8

#4_4 y^3"-2y^2"+5y-10

#5_4 #2a-6-ab^2"+3b^2

#6_4 x^3"+3x^2"-9x-27

#7_4 x^2"-2x+1-y^2

#8_4 xy^3"+2y^2"-xy-2

#9_4 #4x^2"-y^2"+4y-4

#10_4 x^6"-7x^3"-8

#11_4 x^2"+2xy+y^2"-z^2"+2zw-w^2

#12_4 #4a^2"-x^2"+b^2"-y^2"-4ab-2xy

#13_4 x^2"+4xy+4y^2"-x-2y-6

#14_4 x^3"-5x^2"-x+5

#15_4 x^4"-7x^2"y^2"+9y^4

#16_4 y^4"+y^2"+25

#17_4 a^4"+2a^2"b^2"+9b^4

#18_4 x^4"+5x^2"+9












               ,,problems            #eb



    ,factor ! foll[+ expres.ns4

""=;;;

#a4 ax "- ay "- by "6 bx

#b4 ax "- #b;ay "- #f;by "6 #c;bx

#c4 x9#c "- #bx9#b "6 #dx "- #h

#d4 y9#c "- #by9#b "6 #ey "- #aj

#e4 #b;a "- #f "- ab9#b "6 #c;b9#b

#f4 x9#c "6 #cx9#b "- #ix "- #bg

#g4 x9#b "- #bx "6 #a "- y9#b

#h4 xy9#c "6 #by9#b "- xy "- #b

#i4 #dx9#b "- y9#b "6 #dy "- #d

#aj4 x9#f "- #gx9#c "- #h

#aa4 x9#b "6 #bxy "6 y9#b "- z9#b

  "6 #bzw "- w9#b

#ab4 #d;a9#b "- x9#b "6 b9#b "- y9#b

  "- #d;ab "- #bxy

#ac4 x9#b "6 #dxy "6 #dy9#b "- x "- #by

  "- #f

#ad4 x9#c "- #ex9#b "- x "6 #e

#ae4 x9#d "- #gx9#by9#b "6 #iy9#d

#af4 y9#d "6 y9#b "6 #be

#ag4 a9#d "6 #b;a9#b;b9#b "6 #i;b9#d

#ah4 x9#d "6 #ex9#b "6 #i            #gc




#19_4 b^4"+6b^2"c^2"+25c^2          a#eb

#20_4 #25x^2"+30xy+9y^2"+15x+9y+2

#21_4 #3ax-6ay+4bx-8by+cx-2cy

#22_4 #20xy+7zw-5yz-28xw

#23_4 z^4"+4z^3"-2z-8

#24_4 x^4"+4y^4

#25_4 a^8"-b^8

#26_4 x^6"+1

#27_4 x^2"+2xy-z^2"-2yz

#28_4 (x^2"+2x-3)^2"-4

#29_4 (x-y-2z)^2"-(2x+y-z)^2

#30_4 #2(x+2)^2"(x-3)+3(x+2)(x-3)^2



    #3-6 ,,simplific,n ,,( ,,frac;ns



  ,a basic pr9ciple = frac;ns1 algebraic

z well z >i?metic1 /ates t ! value (a

frac;n is n *ang$ if xs num]ator &

denom9ator >e bo? multipli$ or bo?
















#ai4                                a#eb

  b9#d "6 #f;b9#b;c9#b "6 #be;c9#b

#bj4 #bex9#b "6 #cjxy "6 #iy9#b "6 #aex

  "6 #iy "6 #b

#ba4 #c;ax "- #f;ay "6 #d;bx "- #h;by

  "6 cx "- #b;cy

#bb4 #bjxy "6 #gzw "- #eyz "- #bhxw

#bc4 z9#d "6 #dz9#c "- #bz "- #h

#bd4 x9#d "6 #dy9#d

#be4 a9#h "- b9#h

#bf4 x9#f "6 #a

#bg4 x9#b "6 #bxy "- z9#b "- #byz

#bh4 "<x9#b "6 #bx "- #c">9#b "- #d

#bi4 "<x "- y "- #bz">9#b

  "- "<#bx "6 y "- z">9#b

#cj4 #b"<x "6 #b">9#b"<x "- #c">

  "6 #c"<x "6 #b">"<x "- #c">9#b

""=;



    #c-#f ,,,simplifica;n ( frac;ns,



,a basic pr9ciple = frac;ns1 algebraic z

well z >i?metic1 /ates t ! value ( a

frac;n is n *ang$ if xs num]ator &

denom9ator >e bo? multipli$ or bo?   #ge




divid$ 0! same quant;y (not         b#eb

z]o)_4 ,? pr9ciple 0 /at$ 9 ,!orem

#2-8_4 ,h;e1 ! simplific,n or reduc;n (a

frac;n 6l[e/ t]ms is alw possi#4 ,factor

bo? ! num]ator & denom9ator 96_! prime

factors &1 0us+ ! basic pr9ciple1 divide

! num]ator & denom9ator 0! product ( all

_! -mon factors4



  ,,example #1_4 ,reduce

(8x^4"y^7")_/(12x^6"y^3") 6l[e/ t]ms4

  .,solu;n

  ?8x^4"y^7"/12x^6"y^3"#

    _l ?2^3"x^4"y^7"/2^2"*3x^6"y^3"#

    _l ?2^2"x^4"y^3"*2y^4

    "/2^2"x^4"y^3"*3x^2"#_4

,0divid+ bo? num]ator & denom9ator by

#2^2"x^4"y^3, we h

  ?8x^4"y^7"/12x^6"y^3"#

    _l ?2y^4"/3x^2"#_4

-------------------------------------#ec

  ,,example #2_4 ,reduce










divid$ by ! same quant;y "<n        b#eb

z]o">4 ,? pr9ciple 0 /at$ 9 ,!orem

#b-#h4 ,h;e1 ! simplifica;n or reduc;n (

a frac;n to l[e/ t]ms is alw possible4

,factor bo? ! num]ator & denom9ator 9to

_! prime factors &1 by us+ ! basic

pr9ciple1 divide ! num]ator & denom9ator

by ! product ( all _! common factors4



  ^7,example #a4^ ,reduce

"<#hx9#dy9#g">_/"<#abx9#fy9#c"> to l[e/

t]ms4

  .1,solu;n

  ;;;(#hx9#dy9#g./#abx9#fy9#c)

    _= (#b9#cx9#dy9#g

    ./#b9#b"4#cx9#fy9#c)

    _= (#b9#bx9#dy9#c"4#by9#d

    ./#b9#bx9#dy9#c"4#cx9#b)4;

,by divid+ bo? num]ator & denom9ator by

#b9#bx9#dy9#c1 we h

  ;;;(#hx9#dy9#g./#abx9#fy9#c)

    _= (#by9#d./#cx9#b)4;

-------------------------------------#ec

  ^7,example #b4^ ,reduce

                                     #gg




(x^2"-7x+10)_/(2x^2"-x-6) 6l[e/     a#ec

t]ms4

  .,solu;n4 ,if we factor bo? num]ator &

denom9ator1 we h

  ?x^2"-7x+10/2x^2"-x-6#

    _l ?(x-5)(x-2)/(2x+3)(x-2)#,

& divid+ bo? num]ator & denom9ator by

x-2, t is1 apply+ ,!orem #2-8, we get

  ?x^2"-7x+10/2x^2"-x-6# _l ?x-5/2x+3#_4

  ,! elim9,n (a -mon factor 0divid+ !

num]ator & denom9ator (a frac;n 0?

factor is call$ .multiplicative

.c.ell,n4 ,s* a process %d 2 d"o ) c>e1

= ,!orem #2-8 is true only :5 x /.k #0_4

,9 ? case ! id5t;y is true = all values

( ;x except x .k #2 or x .k -?3/2#, : >e

n p]missi# values4



  ,,example #3_4 ,reduce

(12x^2"+30x-72)_/(52x-8x^2"-60) to














"<x;9#b "- #gx "6 #aj">             a#ec

_/"<#bx9#b "- ;x "- #f"> to l[e/ t]ms4

  .1,solu;n4 ,if we factor bo? num]ator

& denom9ator1 we h

  ;;;(x9#b"-#gx"6#aj./#bx9#b"-x"-#f)

    _= ("<x"-#e">"<x"-#b">

    ./"<#bx"6#c">"<x"-#b">)1;

& divid+ bo? num]ator & denom9ator by

;x "- #b1 t is1 apply+ ,!orem #b-#h1 we

get

  ;;;(x9#b"-#gx"6#aj./#bx9#b"-x"-#f)

    _= (x"-#e./#bx"6#c)4;

  ,! elim9a;n ( a common factor by

divid+ ! num]ator & denom9ator ( a

frac;n by ? factor is call$

.7multiplicative c.ella;n4. ,s* a

process %d 2 d"o ) c>e1 = ,!orem #b-#h

is true only :5 ;x "7@: #j4 ,9 ? case !

id5t;y is true = all values ( ;x except

;x "7 #b or ;x "7 "-#c/b1 : >e n

p]missible values4



  ^7,example #c4^ ,reduce

"<#abx9#b "6 #cjx "- #gb">

_/"<#ebx "- #hx9#b "- #fj"> to       #gi




l[e/ t]ms4                          b#ec

  .,solu;n

  ?12x^2"+30x-72/52x-8x^2"-60#

    _l ?6(2x-3)(x+4)/4(3-2x)(x-5)#

    _l ?3(x+4)/2(5-x)#_4

,? id5t;y foll[s f ! fact t

#2x-3 .k -(3-2x)_4 (,recall ,pro#m #4,

,>ticle #2-4_4)



                ,,pro#ms



    ,reduce ! foll[+ 6l[e/ t]ms4

#1_4 ?28/63#

#2_4 ?27x^3"/225x^5"#

#3_4 ?a^4"x^3"y/a^2"xy^3"#

#4_4 ?a^2"+ab/3a+2a^3"#

#5_4 ?a^2"x-a^2"y/ax^2"-ay^2"#

#6_4 ?24a^2"/6a^2"-9a#

#7_4 ?x^2"-1/x^2"-x#

#8_4 ?x^2"-4x+4/x^2"-4#

#9_4 ?x^2"-16/x^2"-8x+16#












l[e/ t]ms4                          b#ec

  .1,solu;n

  ;;;(#abx9#b"6#cjx"-#gb

    ./#ebx"-#hx9#b"-#fj)

    _= (#f"<#bx"-#c">"<x"6#d">

    ./#d"<#c"-#bx">"<x"-#e">)

    _= (#c"<x"6#d">./#b"<#e"-x">)4;

,? id5t;y foll[s f ! fact t

#bx "- #c "7 "-"<#c "- #bx">4 "<,recall

,problem #d1 ,>ticle #b-#d4">



               ,,problems



    ,reduce ! foll[+ to l[e/ t]ms4

""=;;;

#a4 #bh/fc

#b4 (#bgx9#c./#bbex9#e)

#c4 (a9#dx9#cy./a9#bxy9#c)

#d4 (a9#b"6ab./#c;a"6#b;a9#c)

#e4 (a9#bx"-a9#by./ax9#b"-ay9#b)

#f4 (#bd;a9#b./#f;a9#b"-#i;a)

#g4 (x9#b"-#a./x9#b"-x)

#h4 (x9#b"-#dx"6#d./x9#b"-#d)

#i4 (x9#b"-#af./x9#b"-#hx"6#af)

                                     #ha




#10_4 ?a^2"-3a-4/a^2"-a-12#         c#ec

#11_4 ?y^2"-y-6/y^2"+2y-15#

#12_4 ?2x^2"+5x-12/4x^2"-4x-3#

#13_4 ?6a^2"-7a-3/4a^2"-8a+3#

#14_4 ?ax+ay-bx-by/am-bm-an+bn#

-------------------------------------#ed

#15_4 ?14x-24-2x^2"/x^2"+x-20#

#16_4

  ?(4x^2"-9y^2")(18x-12)/(2x-3y)(12x-8)#

#17_4 ?x^2"-36/x^3"-216#

#18_4 ?2x^2"-14x+20/7x-2x^2"-6#

#19_4 ?2(x^2"-y^2")xy+x^4"-y^4

  "/x^4"-y^4"#

#20_4 ?y^6"+64/y^4"-4y^2"+16#

#21_4 ?4a^2"-1/12a^2"+a-4a^3"-3#

#22_4

  ?a^2"-2ab+3b^2"/a^4"+2a^2"b^2"+9b^4"#

#23_4 ?(x^2"-16)(x^2"-4x+16)/x^3"+64#

#24_4 ?15ab-20a-21b+28/21-a-10a^2"#
















#aj4                                c#ec

  (a9#b"-#c;a"-#d./a9#b"-a"-#ab)

#aa4 (y9#b"-y"-#f./y9#b"6#by"-#ae)

#ab4 (#bx9#b"6#ex"-#ab./#dx9#b"-#dx"-#c)

#ac4

  (#f;a9#b"-#g;a"-#c./#d;a9#b"-#h;a"6#c)

#ad4 (ax"6ay"-bx"-by./am"-bm"-an"6bn)

-------------------------------------#ed

#ae4 (#adx"-#bd"-#bx9#b./x9#b"6x"-#bj)

#af4 ("<#dx9#b"-#iy9#b">"<#ahx"-#ab">

  ./"<#bx"-#cy">"<#abx"-#h">)

#ag4 (x9#b"-#cf./x9#c"-#baf)

#ah4

  (#bx9#b"-#adx"6#bj./#gx"-#bx9#b"-#f)

#ai4 (#b"<x9#b"-y9#b">xy"6x9#d"-y9#d

  ./x9#d"-y9#d)

#bj4 (y9#f"6#fd./y9#d"-#dy9#b"6#af)

#ba4 (#d;a9#b"-#a

  ./#ab;a9#b"6a"-#d;a9#c"-#c)

#bb4 (a9#b"-#b;ab"6#c;b9#b

  ./a9#d"6#b;a9#b;b9#b"6#i;b9#d)

#bc4 ("<x9#b"-#af">"<x9#b"-#dx"6#af">

  ./x9#c"6#fd)

#bd4 (#ae;ab"-#bj;a"-#ba;b"6#bh

  ./#ba"-a"-#aj;a9#b)                #hc




       #3-7 ,,a4i;n ,,( ,,frac;ns   a#ed



  ,! algebraic sum ( two or m frac;ns

hav+ ! same denom9ator is a frac;n )!

-mon denom9ator &a num]ator : is !

algebraic sum (! num]ators (! frac;ns

3sid]$4 ,? 0 prov$ 9 ,pro#m #13, ,>ticle

#2-4_4



  ,,illu/r,n4

  ?2x^2"/x-4#-?3x/x-4#+?5/x-4#

    _l ?2x^2"-3x+5/x-4#_4



  ,6f9d ! algebraic sum ( two or m

frac;ns ) di6]5t denom9ators1 we m/

replace ! frac;ns ) equival5t frac;ns

hav+ ! same denom9ators4 ,x is pref]a#

6use ! .l1/ .-mon .denom9ator (,,lcd)_4

,! ,,lcd ( two or m frac;ns 3si/s (!

product ( all ! unique prime factors 9 !

denom9ators1 ea* ) an expon5t equal 6!

l>ge/ expon5t ) : ! factor appe>s1 & is

re,y a result








""=;                                a#ed



       #c-#g ,,,addi;n ( frac;ns,



,! algebraic sum ( two or m frac;ns hav+

! same denom9ator is a frac;n ) ! common

denom9ator & a num]ator : is ! algebraic

sum ( ! num]ators ( ! frac;ns 3sid]$4 ,?

0 prov$ 9 ,problem #ac1 ,>ticle #b-#d4



  ^1,illu/ra;n4

  ;;;(#bx9#b./x"-#d) "- (#cx./x"-#d)

    "6 (#e./x"-#d)

    _= (#bx9#b"-#cx"6#e./x"-#d)4;



  ,to f9d ! algebraic sum ( two or m

frac;ns ) di6]5t denom9ators1 we m/

replace ! frac;ns ) equival5t frac;ns

hav+ ! same denom9ators4 ,x is pref]able

to use ! .7l1/ common denom9ator.

"<,,lcd">4 ,! ,,lcd ( two or m frac;ns

3si/s ( ! product ( all ! unique prime

factors 9 ! denom9ators1 ea* ) an

expon5t equal to ! l>ge/ expon5t ) : !

factor appe>s1 & is r1lly a result   #he




(! foll[+ important !orem4          b#ed



  ,,!orem #3-5_4

  ?a/b#+?c/d# _l ?ad+bc/bd#

    (;b, d /.k #0)_4

  .,pro(4 ,we h

  ?a/b#+?c/d# _l ?ad/bd#+?bc/bd#,

0,!orem #2-8_4 ,if we n[ use ,pro#m #13,

,>ticle #2-4, we h

  ?ad/bd#+?bc/bd# _l ?ad+bc/bd#,

: is \r requir$ result4



  ,,example #1_4 ,f9d ! ,,lcd (! frac;ns

  ?3x/x^2"-4x+4#,

  ?5x^2"/3(x^2"-4)#,

  ?2/2x^2"-x-6#_4

-------------------------------------#ee

  .,solu;n4 ,factor+ ea* denom9ator1 we

h
















( ! foll[+ important !orem4         b#ed



  ^7,!orem #c-#e4^

  ;;;(a./b) "6 (c./d) _= (ad"6bc./bd)

    "<b1 d "7@: #j">4;

  .1,pro(4 ,we h

  ;;;(a./b) "6 (c./d)

    _= (ad./bd) "6 (bc./bd)1;

by ,!orem #b-#h4 ,if we n[ use ,problem

#ac1 ,>ticle #b-#d1 we h

  ;;;(ad./bd) "6 (bc./bd)

    _= (ad"6bc./bd)1;

: is \r requir$ result4



  ^7,example #a4^ ,f9d ! ,,lcd ( !

frac;ns

""=;;;

  (#cx./x9#b"-#dx"6#d)1

  (#ex9#b./#c"<x9#b"-#d">)1

  (#b./#bx9#b"-x"-#f)4

""=;

-------------------------------------#ee

  .1,solu;n4 ,factor+ ea* denom9ator1 we

h

                                     #hg




  x^2"-4x+4 _l (x-2)^2,             a#ee

  #3(x^2"-4) _l #3(x+2)(x-2),

  #2x^2"-x-6 _l (2x+3)(x-2)_4

,! ,,lcd is #3(x+2)(x-2)^2"(2x+3)_4



  ,af ! ,,lcd has be5 det]m9$1 equival5t

frac;ns may 2 =m$4 ,divide ! ,,lcd (a

giv5 frac;n 0! denom9ator ( t frac;n1 &

!n multiply bo? num]ator & denom9ator (!

giv5 frac;n 0! result4 ,! equival5t

frac;ns may n[ 2 a4$1 z 9 ! illu/r,n

abv4



  ,,example #2_4 ,*ange ! foll[+ frac;ns

6equival5t "os1 ) _! ,,lcd z denom9ator1

& f9d _! sum4

  ?4/x+2#,

  ?x+3/x^2"-4#,


















""=;;;                              a#ee

  x9#b "- #dx "6 #d

    _= "<x "- #b">9#b1

  #c"<x9#b "- #d">

    _= #c"<x "6 #b">"<x "- #b">1

  #bx9#b "- x "- #f

    _= "<#bx "6 #c">"<x "- #b">4

""=;

,! ,,lcd is #c"<x "6 #b">"<x "- #b">9#b

"<#bx "6 #c">4



  ,af ! ,,lcd has be5 det]m9$1 equival5t

frac;ns may 2 =m$4 ,divide ! ,,lcd ( a

giv5 frac;n by ! denom9ator ( t frac;n1

& !n multiply bo? num]ator & denom9ator

( ! giv5 frac;n by ! result4 ,!

equival5t frac;ns may n[ 2 add$1 z 9 !

illu/ra;n abv4



  ^7,example #b4^ ,*ange ! foll[+

frac;ns to equival5t "os1 ) _! ,,lcd z

denom9ator1 & f9d _! sum4

""=;;;

  (#d./x"6#b)1

  (x"6#c./x9#b"-#d)1                 #hi




  ?2x+1/x-2#_4                      b#ee

  .,solu;n4 ,! ,,lcd is (x+2)(x-2)_4

,"!=e1

  ?4/x+2# _l ?4(x-2)/(x+2)(x-2)#,

  ?x+3/x^2"-4# _l ?x+3/(x+2)(x-2)#,

  ?2x+1/x-2#

    _l ?(2x+1)(x+2)/(x+2)(x-2)#,

&






































  (#bx"6#a./x"-#b)4                 b#ee

""=;

  .1,solu;n4 ,! ,,lcd is

"<;x "6 #b">"<x "- #b">4 ,"!=e1

""=;;;

  (#d./x"6#b)

    _= (#d"<x"-#b">

    ./"<x"6#b">"<x"-#b">)1

  (x"6#c./x9#b"-#d)

    _= (x"6#c./"<x"6#b">"<x"-#b">)1

  (#bx"6#a./x"-#b)

    _= ("<#bx"6#a">"<x"6#b">

    ./"<x"6#b">"<x"-#b">)1

""=;

&



















                                     #ia




  ?4/x+2#+?x+3/x^2"-4#+?2x+1/x-2#   c#ee

    _l ?4(x-2)/(x+2)(x-2)#

      +?x+3/(x+2)(x-2)#

      +?(2x+1)(x+2)/(x+2)(x-2)#

    _l ?(4x-8)+(x+3)+(2x^2"+5x+2)

      /x^2"-4#

    _l ?2x^2"+10x-3/x^2"-4#_4



                ,,pro#ms



    ,reduce ! foll[+ 6s+le frac;ns &

  simplify4

#1_4 ?2/3#+?5/6#-?3/10#

#2_4 #5-?4/9#-?7/15#

#3_4 ?3x/4y#-?4y/3x#

#4_4 ?a^2"/b#-?b^2"/a#

#5_4 ?2x+3/6#-?4x-7/9#

#6_4 ?3x-1/5#+?4-5x/6#

-------------------------------------#ef

#7_4 x+y+?x^2"/x-y#














  ;;;(#d./x"6#b)                    c#ee

      "6 (x"6#c./x9#b"-#d)

      "6 (#bx"6#a./x"-#b)

    _= (#d"<x"-#b">./"<x"6#b">"<x"-#b">)

      "6 (x"6#c./"<x"6#b">"<x"-#b">)

      "6 ("<#bx"6#a">"<x"6#b">

      ./"<x"6#b">"<x"-#b">)

    _= ("<#dx"-#h">"6"<x"6#c">

      "6"<#bx9#b"6#ex"6#b">

      ./x9#b"-#d)

    _= (#bx9#b"6#ajx"-#c./x9#b"-#d)4;



               ,,problems



    ,reduce ! foll[+ to s+le frac;ns &

  simplify4

""=;;;

#a4 #b/c "6 #e/f "- #c/aj

#b4 #e "- #d/i "- #g/ae

#c4 (#cx./#dy) "- (#dy./#cx)

#d4 (a9#b./b) "- (b9#b./a)

#e4 (#bx"6#c./#f) "- (#dx"-#g./#i)

#f4 (#cx"-#a./#e) "6 (#d"-#ex./#f)

-------------------------------------#ef

#g4 x "6 y "6 (x9#b./x"-y)           #ic




#8_4 ?x+1/x+2#-?x+3/x#              a#ef

#9_4 ?3x-2y/5x-3#+?2x-y/3-5x#

#10_4 ?2/12x^2"-3#+?3/2x-4x^2"#

#11_4 ?5/x#-?4/y#+?3/z#

#12_4 ?4/x^2"-4x-5#+?2/x^2"-1#

#13_4 ?2x-1/4-x#+?x+2/3x-12#

#14_4 ?x+5/x^2"+7x+10#-?x-1/x^2"+5x+6#

#15_4

  ?x-1/2x^2"-13x+15#+?x+3/2x^2"-15x+18#

#16_4 ?2x+3/3x^2"+x-2#-?3x-4/2x^2"-3x-5#

#17_4 ?3/a-3#+?a^2"+2/a^3"-27#

#18_4 ?2xy/x^3"+y^3"#-?x/x^2"-xy+y^2"#

#19_4 ?2/x^2"+3x+2#-?3/x^2"+5x+6#

  -?4/x^2"+4x+3#


























#h4 (x"6#a./x"6#b) "- (x"6#c./x)    a#ef

#i4 (#cx"-#by./#ex"-#c)

  "6 (#bx"-y./#c"-#ex)

#aj4

  (#b./#abx9#b"-#c) "6 (#c./#bx"-#dx9#b)

#aa4 (#e./x) "- (#d./y) "6 (#c./z)

#ab4

  (#d./x9#b"-#dx"-#e) "6 (#b./x9#b"-#a)

#ac4

  (#bx"-#a./#d"-x) "6 (x"6#b./#cx"-#ab)

#ad4 (x"6#e./x9#b"6#gx"6#aj)

  "- (x"-#a./x9#b"6#ex"6#f)

#ae4 (x"-#a./#bx9#b"-#acx"6#ae)

  "6 (x"6#c./#bx9#b"-#aex"6#ah)

#af4 (#bx"6#c./#cx9#b"6x"-#b)

  "- (#cx"-#d./#bx9#b"-#cx"-#e)

#ag4

  (#c./a"-#c) "6 (a9#b"6#b./a9#c"-#bg)

#ah4 (#bxy./x9#c"6y9#c)

  "- (x./x9#b"-xy"6y9#b)

#ai4 (#b./x9#b"6#cx"6#b)

  "- (#c./x9#b"6#ex"6#f)

  "- (#d./x9#b"6#dx"6#c)



                                     #ie




#20_4                               b#ef

  x+6+?5x+1/12x^2"+5x-2#-?x/3x+2#

#21_4 #2y-3+?y-2/4y^2"-12y+9#

  +?y+2/2y^2"-y-3#

#22_4 ?1/(x-y)(y-z)#+?1/(y-z)(z-x)#

  +?1/(z-x)(x-y)#

#23_4 ?x/(x-y)(y-z)#+?y/(y-z)(z-x)#

  +?z/(z-x)(x-y)#

#24_4 ?2x-1/2x^2"-x-6#+?x+3/6x^2"+x-12#

  -?2x-3/3x^2"-10x+8#



      ,,5d ,,( ,,algebra ,,sample

           ,,9 ,,neme? ,,code




























#bj4 x "6 #f                        b#ef

  "6 (#ex"6#a./#abx9#b"6#ex"-#b)

  "- (x./#cx"6#b)

#ba4 #by "- #c

  "6 (y"-#b./#dy9#b"-#aby"6#i)

  "6 (y"6#b./#by9#b"-y"-#c)

#bb4 (#a./"<x"-y">"<y"-z">)

  "6 (#a./"<y"-z">"<z"-x">)

  "6 (#a./"<z"-x">"<x"-y">)

#bc4 (x./"<x"-y">"<y"-z">)

  "6 (y./"<y"-z">"<z"-x">)

  "6 (z./"<z"-x">"<x"-y">)

#bd4 (#bx"-#a./#bx9#b"-x"-#f)

  "6 (x"6#c./#fx9#b"6x"-#ab)

  "- (#bx"-#c./#cx9#b"-#ajx"6#h)

""=;



    ,,,5d ( algebra sample 9 uebc,













                                     #ig

























































              ,sample #c4

               ,calculus



  ,? sample is transcrib$ us+ ..,!

,neme? ,brl ,code = ,ma!matics & ,sci;e

,not,n #aigb .,revi.n 7on left-h& pages7

&! ,unifi$ ,5gli% ,brl ,code z ( ,june

#bjja 7on "r-h& pages74

































                                     #ii




    ,calculus ,sample 9 ,neme? ,code

7777777777777777777777777777777777777777

    ,neme? ,symbols

_ 7#def7 punctu,n 9dicator

_ 7#def7 boldface lr 9dicator

" 7#e7 2g9 modifi$ expres.n

% 2g9 modifi] 2l

< 2g9 modifi] abv

] 5d modifi$ expres.n

; 7#ef7 2g9 subscript

;; 7#ef1 #ef7 2g9 subscript )9 subscript

^ 7#de7 2g9 sup]script

^; 7#de1 #ef7 2g9 subscript )9

  sup]script

[ -ma )9 subscript or sup]script

" 7#e7 return 6basel9e af subscript or

  sup]script

> 2g9 squ>e root

] 5d squ>e root

? 2g9 frac;n

_? 2g9 frac;n por;n ( mix$ numb]

/ horizontal frac;n l9e

# 5d frac;n

_# 5d frac;n por;n ( mix$ numb]

, 7#f7 ma!matical -ma




       ,calculus ,sample 9 ,,uebc

7777777777777777777777777777777777777777

    ,,uebc ,symbols

.=; grade "o symbol

.=;; grade "o ^w

.=;;; 2g9 grade "o passage

.=; 72f a space7 5d grade "o passage

.=""= dot locator 72f l[] symbol on a

  l9e 0xf7



.=,,, 2g9 capitaliz$ passage

.=, 72f a space7 5d capitaliz$ passage

.=.1 italic ^w

.=.7 2g9 italic passage

.=. 72f a space7 5d italic passage

.=^2 bold lr

.=^1 bold ^w



.=( 2g9 frac;n

.=./ frac;n l9e

.=) 5d frac;n

.=< 2g9 -p.d item

.=> 5d -p.d item

.=% 2g9 squ>e root

.=+ 5d squ>e root                   #aja




    ,neme? ,symbols 73t47

. 7#df7 decimal po9t

+ plus sign

- 7#cf7 m9us sign

* "ts sign 7dot7

.k equal sign

"k less ?an sign

"k.k less ?an or equal sign

( op5+ p>5!sis

) clos+ p>5!sis

@( op5+ bracket

@) clos+ bracket

@# a/]isk

! 9tegral sign

!@$c$59o] 9tegral sign ) sup]impos$

  circle be>+ c.t]clockwise >r[

!@$c$[59] 9tegral sign ) sup]impos$

  circle be>+ clockwise >r[

,= 9f9;y sign

' 7#c7 prime sign

^.* degree sign

$o "r >r[

\ v]tical b>

$_4 solid squ>e

.,d ,greek capital delta




    ,,uebc ,symbols 73t47

.=9 sup]script next item

.=5 subscript next item

.=.5 next item directly 2l previ\s item

.=.9 next item directly abv previ\s item

.=& sup]impose next symbol on previ\s

  symbol

.=^: >r[ ov] previ\s item



.=4 decimal po9t

.=444 ellipsis

.="6 plus sign

.="- m9us sign

.="4 "ts sign 7dot7

.="7 equal sign

.=@< less ?an sign

.=_@< less ?an or equal sign

.="< op5+ p>5!sis

.="> clos+ p>5!sis

.=.< op5+ bracket

.=.> clos+ bracket

.=,- da%

.="9 a/]isk

.=! 9tegral sign

.=#= 9f9;y sign                     #ajc




    ,neme? ,symbols 73t47

.,s ,greek capital sigma

.a ,greek alpha

.f ,greek phi

.p ,greek pi

.y ,greek psi

.s ,greek sigma

gggggggggggggggggggggggggggggggggggggggg






































    ,,uebc ,symbols 73t47

.=7 prime sign

.=^j degree sign

.=\o "r >r[

.=_\ v]tical l9e

.=_$#d fill$ squ>e

.=@$cc transcrib]-def9$ %ape3 circle )

  c.t]clockwise >r[

.=@$cl transcrib]-def9$ %ape3 circle )

  clockwise >r[

.=: 5d %ape

.=,.d capital ,greek delta

.=,.s capital ,greek sigma

.=.a ,greek alpha

.=.f ,greek phi

.=.p ,greek pi

.=.y ,greek psi

.=.s ,greek sigma

gggggggggggggggggggggggggggggggggggggggg











                                    #aje




    #5 ,vector ,9tegral ,calculus   #bgi



     ,"p ;,i_4 ,two-,dim5.nal ,!ory



            #5.1 ,,9troduc;n



  ,! topic ( ? *apt] is ..l9e & surface

.9tegrals4 ,x w 2 se5 t ^! c bo? 2

reg>d$ z 9tegrals ( vectors & t !

pr9cipal !orems c 2 mo/ simply /at$ 9

t]ms ( vectors2 h;e ! title 8vector

9tegral calculus40

  ,a famili> l9e 9tegral is t ( >c l5g?3

"!%,c]ds_4 ,! subscript ;,c 9dicates t

"o is m1sur+ ! l5g? (a curve ;,c, z 9

,fig4 #5.1_4 ,if ;,c is giv5 9 p>ametric

=m x .k x(t), y .k y(t), ! l9e 9tegral

reduces 6! ord9>y def9ite 9tegral3

  "!%,c]ds

    .k !;t;;1^t^;2

    ">(?dx/dt#)^2"+(?dy/dt#)^2"]dt_4

  ,if ! curve ;,c repres5ts a wire ^:

d5s;y (mass p] unit l5g?) v>ies








    #e ,vector ,9tegral ,calculus   #bgi



      ,"p ,i4 ,two-,dim5.nal ,!ory



            #e4a ,,9troduc;n



,! topic ( ? *apt] is .7l9e & surface

9tegrals4. ,x w 2 se5 t ^! c bo? 2

reg>d$ z 9tegrals ( vectors & t !

pr9cipal !orems c 2 mo/ simply /at$ 9

t]ms ( vectors2 h;e ! title 8vector

9tegral calculus40

  ,a famili> l9e 9tegral is t ( >c l5g?3

;!.5,c ds4 ,! subscript ;,c 9dicates t

"o is m1sur+ ! l5g? ( a curve ;,c1 z 9

,fig4 #e4a4 ,if ;,c is giv5 9 p>ametric

=m ;x "7 x"<t">1 ;y "7 y"<t">1 ! l9e

9tegral reduces to ! ord9>y def9ite

9tegral3

  ;;;!.5,c ds

    "7 !5<t5#a>9<t5#b>

    %"<(dx./dt)">9#b "6 "<(dy./dt)">9#b+

    dt4;

  ,if ! curve ;,c repres5ts a wire ^:

d5s;y "<mass p] unit l5g?"> v>ies   #ajg




al;g ;,c, !n ! wire has a total    a#bgi

mass

  ,m .k "!%,c]f(x, y)ds,

": f(x, y) is ! d5s;y at ! po9t (x, y)

(! wire4 ,! new 9tegral c 2 express$ 9

t]ms (a p>amet] z previ\sly or c 2 ?"\ (

simply z a limit (a sum

  "!%,c]f(x, y)ds

    .k lim ".,s%i .k #1<n]

    f(x;i^@#, y;i^@#").,d;i"s_4

------------------------------------#bhj

,"h ! curve has be5 subdivid$ 9to ;n

pieces ( l5g?s

.,d1s, .,d2s, ''', .,d;n"s, &! po9t

(x;i^@#, y;i^@#") lies on ! ;ith piece4

,! limit is tak5 z ;n 2comes 9f9ite1

:ile ! maximum .,d;i"s approa*es #0_4

  ,a ?ird example (a l9e 9tegral is t (

."w4 ,if a "picle moves f "o 5d ( ;,c 6!

o!r "u ! 9flu;e (a =ce _;,f, ! "w d"o 0?

=ce is def9$ z

  "!%,c],f;,t"ds,

": ,f;,t denotes ! -pon5t ( _;,f on !

tang5t _;,t 9 ! direc;n (






al;g ;,c1 !n ! wire has a total    a#bgi

mass

  ;;;,m "7 !.5,c f"<x1 y"> ds1;

": f"<x1 ;y"> is ! d5s;y at ! po9t

"<;x1 ;y"> ( ! wire4 ,! new 9tegral c 2

express$ 9 t]ms ( a p>amet] z previ\sly

or c 2 ?"\ ( simply z a limit ( a sum

  ;;;!.5,c f"<x1 y"> ds

    "7 lim ,.s.5<i"7#a>.9n

    f"<x5i9"91 y5i9"9"> ,.d5is4;

------------------------------------#bhj

,"h ! curve has be5 subdivid$ 9to ;n

pieces ( l5g?s

;;;,.d5#as1 ,.d5#bs1 4441 ,.d5ns1; & !

po9t ;;;"<x5i9"91 y5i9"9">; lies on ! i?

piece4 ,! limit is tak5 z ;n 2comes

9f9ite1 :ile ! maximum ,.d;5is approa*es

#j4

  ,a ?ird example ( a l9e 9tegral is t (

.1"w4 ,if a "picle moves f "o 5d ( ;,c

to ! o!r "u ! 9flu;e ( a =ce ^2;,f1 ! "w

d"o by ? =ce is def9$ z

  ;;;!.5,c ,f5,t ds1;

": ,f;5,t denotes ! compon5t ( ^2;,f on

! tang5t ^2;,t 9 ! direc;n (        #aji




mo;n4 ,? 9tegral c 2 ?"\ ( z a     a#bhj

limit (a sum z previ\sly4 ,h["e1 ano!r

9t]pret,n is possi#4 ,we f/ rem>k t ! "w

d"o 0a 3/ant =ce _;,f 9 mov+ a "picle f

;,a to ;,b on ! l9e seg;t ,a,b is

_;,f*",a,b<$o]_2 = ? scal> product is

equal to \_;,f\*cos .a*\",a,b<$o]\, .a

2+ ! angle 2t _;,f & ",a,b<$o], & h;e 6!

product ( =ce -pon5t 9 direc;n ( mo;n 0!

4t.e mov$4 ,n[ ! mo;n (! "picle al;g ;,c

c 2 ?"\ ( z ! sum ( _m small 4place;ts

al;g l9e seg;ts1 z su7e/$ 9 ,fig4 #5.2_4

,if ^! 4place;ts >e denot$ by

.,d1_;r, .,d2_;r, ''', .,d;n"_;r, ! "w

d"o wd 2 approximat$ 0a sum ( =m

  ".,s%i .k #1<n]_;,f;i"*.,d;i"_;r,

------------------------------------#bha

": _;,f;i is ! =ce act+ =! ;ith

4place;t4 ,! limit+ =m ( ? is ag equal

6! l9e 9tegral !,f;,t"ds, b 2c (! way !

limit is obta9$1 we c al write x z

  "!%,c]_;,f*d_;r_4










mo;n4 ,? 9tegral c 2 ?"\ ( z a     a#bhj

limit ( a sum z previ\sly4 ,h["e1 ano!r

9t]preta;n is possible4 ,we f/ rem>k t !

"w d"o by a 3/ant =ce ^2;,f 9 mov+ a

"picle f ,a to ;,b on ! l9e seg;t ;,,ab

is ;;;^2,f "4 <,,ab>^:2; = ? scal>

product is equal to

;;;_\^2,f_\ "4 cos .a "4 _\<,,ab>^:_\1;

.a 2+ ! angle 2t ^2;,f & ;;<,,ab>^:1 &

h;e to ! product ( =ce compon5t 9

direc;n ( mo;n by ! 4t.e mov$4 ,n[ !

mo;n ( ! "picle al;g ;,c c 2 ?"\ ( z !

sum ( _m small 4place;ts al;g l9e

seg;ts1 z su7e/$ 9 ,fig4 #e4b4 ,if ^!

4place;ts >e denot$ by

;;;,.d5#a^2r1 ,.d5#b^2r1 4441 ,.d5n^2r1;

! "w d"o wd 2 approximat$ by a sum ( =m

  ;;;,.s.5<i"7#a>.9n ^2,f5i

    "4 ,.d5i^2r1;

------------------------------------#bha

": ^2,f;5i is ! =ce act+ = ! i?

4place;t4 ,! limit+ =m ( ? is ag equal

to ! l9e 9tegral ;! ,f;5,t ds1 b 2c ( !

way ! limit is obta9$1 we c al write x z

  ;;;!.5,c ^2,f "4 d^2r4;           #aaa




  ,"o c ?us write                  a#bha

  work .k "!%,c],f;,t"ds

    .k "!%,c]_;,f*d_;r_4

  ,if ! 4place;t vector .,d_;r & =ce

_;,f >e express$ 9 -pon5ts1

  _;,f .k ,f;x"_;i+,f;y"_;j,

    .,d_;r .k .,dx_;i+.,dy_;j,

! ele;t ( "w _;,f*.,d_;r 2comes

  _;,f*.,d_;r .k ,f;x".,dx+,f;y".,dy_4

,! total am.t ( "w d"o is !n approximat$

0a sum ( =m

  .,s(,f;x".,dx+,f;y".,dy)

    .k .,s,f;x".,dx+.,s,f;y".,dy_4

,! limit+ =m ( ? is a sum ( two

9tegrals3

  "!%,c],f;x"dx+"!%,c],f;y"dy_4

,! f/ 9tegral repres5ts ! "w d"o 0!

;x-compon5t (! =ce2 ! second 9tegral

repres5ts ! "w d"o 0! ;y-compon5t (!

=ce4

  ,x ?us appe>s t "o has ?ree types (

l9e 9tegrals 63sid]1 "nly1 ! types










  ,"o c ?us write                  a#bha

  ;;;work "7 !.5,c ,f5,t ds

    "7 !.5,c ^2,f "4 d^2r4;

  ,if ! 4place;t vector ,.d^2r & =ce

^2;,f >e express$ 9 compon5ts1

  ;;;^2,f "7 ,f5x^2i "6 ,f5y^2j1

    ,.d^2r "7 ,.dx^2i "6 ,.dy^2j1;

! ele;t ( "w ^2;,f "4 ,.d^2r 2comes

  ;;;^2,f "4 ,.d^2r

    "7 ,f5x,.dx "6 ,f5y,.dy4;

,! total am.t ( "w d"o is !n approximat$

by a sum ( =m

  ;;;,.s "<,f5x,.dx "6 ,f5y,.dy">

    "7 ,.s ,f5x,.dx "6 ,.s ,f5y,.dy4;

,! limit+ =m ( ? is a sum ( two

9tegrals3

  ;;;!.5,c ,f5x dx "6 !.5,c ,f5y dy4;

,! f/ 9tegral repres5ts ! "w d"o by !

;x-compon5t ( ! =ce2 ! second 9tegral

repres5ts ! "w d"o by ! ;y-compon5t ( !

=ce4

  ,x ?us appe>s t "o has ?ree types (

l9e 9tegrals to 3sid]1 "nly1 ! types



                                    #aac




  "!%,c]f(x, y)ds,                 b#bha

    "!%,c],p(x, y)dx,

    "!%,c],q(x, y)dy,

: >e limits ( sums

  .,sf(x, y).,ds, .,s,p(x, y).,dx,

    .,s,q(x, y).,dy_4

  ,! =ego+ gives ! basis =! !ory ( l9e

9tegrals 9 ! plane4 ,a v sli<t ext5.n (

^! id1s l1ds 6l9e 9tegrals 9 space3

  "!%,c]f(x, y, z)ds,

    "!%,c]f(x, y, z)dx, '''_4

,surface 9tegrals appe> z a natural

g5]aliz,n1 )! surface >ea ele;t d.s

replac+ ! >c ele;t ds_3

  "!!%,s]f(x, y, z)d.s

    .k lim .,sf(x, y, z).,d.s_4

,"! >e correspond+ -pon5t 9tegrals

  "!!%,s]f(x, y, z)dxdy,

    "!!%,s]f(x, y, z)dydz, '''

------------------------------------#bhb

&a vector surface 9tegral

  "!!%,s]_;,f*d_.s

    .k "!!%,s](_;,f*_;n)d.s,

": d_.s .k _;nd.s is ! 8>ea






  ;;;!.5,c f"<x1 y"> ds1           b#bha

    !.5,c ,p"<x1 y"> dx1

    !.5,c ,q"<x1 y"> dy1;

: >e limits ( sums

  ;;;,.s f"<x1 y"> ,.ds1

    ,.s ,p"<x1 y"> ,.dx1

    ,.s ,q"<x1 y"> ,.dy4;

  ,! =ego+ gives ! basis = ! !ory ( l9e

9tegrals 9 ! plane4 ,a v sli<t ext5.n (

^! id1s l1ds to l9e 9tegrals 9 space3

  ;;;!.5,c f"<x1 y1 z"> ds1

    !.5,c f"<x1 y1 z"> dx1 4444;

,surface 9tegrals appe> z a natural

g5]aliza;n1 ) ! surface >ea ele;t d;.s

replac+ ! >c ele;t ds3

  ;;;<!!>.5,s f"<x1 y1 z"> d.s

    "7 lim ,.s f"<x1 y1 z"> ,.d.s4;

,"! >e correspond+ compon5t 9tegrals

  ;;;<!!>.5,s f"<x1 y1 z"> dx dy1

    <!!>.5,s f"<x1 y1 z"> dy dz1 444;

------------------------------------#bhb

& a vector surface 9tegral

  ;;;<!!>.5,s ^2,f "4 d^2.s

    "7 <!!>.5,s "<^2,f "4 ^2n"> d.s1;

": d^2;.s "7 ^2;n d;.s is ! 8>ea    #aae




ele;t vector10 _;n 2+ a unit       a#bhb

normal vector 6! surface4

  ,x w 2 se5 t ! basic !orems--^? (

,gre51 ,gauss1 & ,/okes--3c]n ! rel,ns

2t l9e1 surface1 & volume (triple)

9tegrals4 ,^! correspond 6funda;tal

physical rel,ns 2t s* quantities z flux1

circul,n1 div]g;e1 & curl4 ,! applic,ns

w 2 3sid]$ at ! 5d (! *apt]4



         #5.2 ,,l9e ,,9tegrals

            ,,9 ,,! ,,plane



  ,we n[ /ate 9 precise =m ! def9i;ns

\tl9$ 9 ! prec$+ sec;n4

  ,0a .smoo? .curve ;,c 9 ! xy-plane w 2

m1nt a curve repres5ta# 9 ! =m3

  (5.1) x .k .f(t), y .k .y(t),

    h "k.k t "k.k k,

": ;x & ;y >e 3t9u\s & h 3t9u\s

derivatives = h "k.k t "k.k k_4 ,! curve

;,c c 2 assign$ a direc;n1 : w usu,y 2 t

( 9cr1s+ ;t_4 ,if ;,a denotes ! po9t

@(.f(h), .y(h)@) & ;,b denotes ! po9t

@(.f(k), .y(k)@), !n ;,c c 2 ?"\ ( z !




ele;t vector10 ^2;n 2+ a unit      a#bhb

normal vector to ! surface4

  ,x w 2 se5 t ! basic !orems,-^? (

,gre51 ,gauss1 & ,/okes,-3c]n ! rela;ns

2t l9e1 surface1 & volume "<triple">

9tegrals4 ,^! correspond to funda;tal

physical rela;ns 2t s* quantities z

flux1 circula;n1 div]g;e1 & curl4 ,!

applica;ns w 2 3sid]$ at ! 5d ( ! *apt]4



    #e4b ,,,l9e 9tegrals 9 ! plane,



,we n[ /ate 9 precise =m ! def9i;ns

\tl9$ 9 ! prec$+ sec;n4

  ,by a .7smoo? curve. ;,c 9 ! xy-plane

w 2 m1nt a curve repres5table 9 ! =m3

  ;;;"<#e4a"> x "7 .f"<t">1

    y "7 .y"<t">1 h _@< t _@< k1;

": ;x & ;y >e 3t9u\s & h 3t9u\s

derivatives = ;h _@< ;t _@< ;k4 ,! curve

;,c c 2 assign$ a direc;n1 : w usually 2

t ( 9cr1s+ ;t4 ,if ,a denotes ! po9t

.<.f"<h">1 .y"<h">.> & ;,b denotes !

po9t .<.f"<k">1 .y"<k">.>1 !n ;,c c 2

?"\ ( z !                           #aag




pa? (a po9t mov+ 3t9u\sly f ;,a    b#bhb

to ;,b_4 ,? pa? may cross xf1 z =! curve

,c1 ( ,fig4 #5.3_4 ,if ! 9itial po9t ;,a

& t]m9al po9t ;,b co9cide1 ;,c is t]m$ a

.clos$ curve2 if1 9 a4i;n1 (x, y) moves

f ;,a to ,b .k ,a )\t retrac+ any o!r

po9t1 ;,c is call$ a .simple .clos$

curve (curve ,c2 ( ,fig4 #5.3)_4

  ,let ;,c 2 a smoo? curve z previ\sly1

) positive direc;n t ( 9cr1s+ ;t_4 ,let

f(x, y) 2 a func;n def9$ at l1/ :5

(x, y) is on ;,c_4 ,!

------------------------------------#bhc

l9e 9tegral "!%,c]f(x, y)dx is def9$ z a

limit3

  (5.2) "!%,c]f(x, y)dx

    .k lim ".,s%i .k #1<n]

    f(x;i^@#, y;i^@#").,d;i"x_4

,! limit ref]s 6a subdivi.n ( ;,c z

9dicat$ 9 ,fig4 #5.4_4 ,! su3essive

subdivi.n po9ts >e

;,a_3 (x0, y0), (x1, y1), ''',

;,b_3 (x;n, y;n")_4 ,^! correspond

6p>amet] values3






pa? ( a po9t mov+ 3t9u\sly f ,a    b#bhb

to ;,b4 ,? pa? may cross xf1 z = ! curve

,c;5#a ( ,fig4 #e4c4 ,if ! 9itial po9t

,a & t]m9al po9t ;,b co9cide1 ;,c is

t]m$ a .1clos$ curve2 if1 9 addi;n1

"<;x1 ;y"> moves f ,a to ;,b "7 ,a )\t

retrac+ any o!r po9t1 ;,c is call$ a

.7simple clos$. curve "<curve ,c;5#b (

,fig4 #e4c">4

  ,let ;,c 2 a smoo? curve z previ\sly1

) positive direc;n t ( 9cr1s+ ;t4 ,let

f"<x1 ;y"> 2 a func;n def9$ at l1/ :5

"<;x1 ;y"> is on ;,c4 ,!

------------------------------------#bhc

l9e 9tegral ;!.5,c f"<x1 ;y"> dx is

def9$ z a limit3

  ;;;"<#e4b"> !.5,c f"<x1 y"> dx

    "7 lim ,.s.5<i"7#a>.9n

    f"<x5i9"91 y5i9"9"> ,.d5ix4;

,! limit ref]s to a subdivi.n ( ;,c z

9dicat$ 9 ,fig4 #e4d4 ,! su3essive

subdivi.n po9ts >e

;;;,a3 "<x5#j1 y5#j">1 "<x5#a1 y5#a">1

4441 ,b3 "<x5n1 y5n">4; ,^! correspond

to p>amet] values3                  #aai




h .k t0 "k t1 "k ''' "k t;n        a#bhc

.k k_4 ,! po9t (x;i^@#, y;i^@#") is "s

po9t ( ;,c 2t (x;i-1, y;i-1") &

(x;i, y;i")_2 t is1 (x;i^@#, y;i^@#")

corresponds 6a p>amet] value t;i^@#, ":

t;i-1 "k.k t;i^@# "k.k t;i_4 .,d;i"x

denotes ! di6];e x;i"-x;i-1_4 ,! limit

is tak5 z ;n 2comes 9f9ite &! l>ge/

.,d;i"t approa*es #0, ":

.,d;i"t .k t;i"-t;i-1_4 ,simil>ly1

  (5.3) "!%,c]f(x, y)dy

    .k lim .,sf(x;i^@#, y;i^@#").,d;i"y,

": .,d;i"y .k y;i"-y;i-1_4

  ,! signific.e ( ^! def9i;ns is

gu>ante$ 0! foll[+ basic !orems3



  ;,i ,if f(x, y) is 3t9u\s on ;,c, !n

  "!%,c]f(x, y)dx

&
















;;;h "7 t5#j @< t5#a @< 444        a#bhc

@< t5n "7 k4; ,! po9t

;;;"<x5i9"91 y5i9"9">; is "s po9t ( ;,c

2t ;;;"<x5<i"-#a>1 y5<i"-#a>">; &

"<x;5i1 y;5i">2 t is1

;;;"<x5i9"91 y5i9"9">; corresponds to a

p>amet] value ;;t5i9"91 ":

;;;t5<i"-#a> _@< t5i9"9 _@< t5i4;

,.d;5ix denotes ! di6];e

;;;x5i "- x5<i"-#a>4; ,! limit is tak5 z

;n 2comes 9f9ite & ! l>ge/ ,.d;5it

approa*es #j1 ":

;;;,.d5it "7 t5i "- t5<i"-#a>4;

,simil>ly1

  ;;;"<#e4c"> !.5,c f"<x1 y"> dy

    "7 lim ,.s f"<x5i9"91 y5i9"9">

    ,.d5iy1;

": ;;;,.d5iy "7 y5i "- y5<i"-#a>4;

  ,! signific.e ( ^! def9i;ns is

gu>ante$ by ! foll[+ basic !orems3



  ,i ,if f"<x1 ;y"> is 3t9u\s on ;,c1

!n

  ;;;!.5,c f"<x1 y"> dx;

&                                   #aba




  "!%,c]f(x, y)dy                  b#bhc

exi/4



  ,,ii ,if f(x, y) is 3t9u\s on ;,c, !n

  (5.4) "!%,c]f(x, y)dx

    .k !;h^k"f@(.f(t), .y(t)@).f'(t)dt,

  (5.5) "!%,c]f(x, y)dy

    .k !;h^k"f@(.f(t), .y(t)@).y'(t)dt_4



  ,=mulas (5.4) & (5.5) reduce !

9tegrals 6ord9>y def9ite 9tegrals & >e

?us ess5tial = -put,n ( "picul>

9tegrals4 ,?us let ;,c 2 !

------------------------------------#bhd

pa? x .k #1+t, y .k t^2,

#0 "k.k t "k.k #1, direct$ ) 9cr1s+ ;t_4

,!n




















  ;;;!.5,c f"<x1 y"> dy;           b#bhc

exi/4



  ,,ii ,if f"<x1 ;y"> is 3t9u\s on

;,c1 !n

""=;;;

  "<#e4d"> !.5,c f"<x1 y"> dx

    "7 !5h9k f.<.f"<t">1 .y"<t">.>

    .f7"<t"> dt1

  "<#e4e"> !.5,c f"<x1 y"> dy

    "7 !5h9k f.<.f"<t">1 .y"<t">.>

    .y7"<t"> dt4

""=;



  ,=mulas "<#e4d"> & "<#e4e"> reduce !

9tegrals to ord9>y def9ite 9tegrals & >e

?us ess5tial = computa;n ( "picul>

9tegrals4 ,?us let ;,c 2 !

------------------------------------#bhd

pa? ;;;x "7 #a "6 t1 y "7 t9#b1

#j _@< t _@< #a1; direct$ ) 9cr1s+ ;t4

,!n





                                    #abc




  "!%,c](x^2"-y^2")dx              a#bhd

    .k !;0^1"@((1+t)^2"-t^4"@)dt

    .k ?32/15#,

  "!%,c](x^2"-y^2")dy

    .k !;0^1"@((1+t)^2"-t^4"@)2tdt

    .k #2_?1/2_#_4

  ,x is logic,y easi] 6prove ,,ii f/1 =

;,i is an imm 3sequ;e ( ,,ii_4 ,6prove

,,ii, "o notes t ! sum

.,sf(x;i^@#, y;i^@#").,d;i"x c 2 writt5

z

  ".,s%i .k #1<n]

    f@(.f(t1^@#"), .y(t1^@#")@)

    ?.,d;i"x/.,d;i"t#.,d;i"t_4

,n[ .,d;i"x .k x;i"-x;i-1

.k .f'(t;i^@#@#").,d;i"t 0! ,law (!

,m1n4 ,h;e ! sum c 2 writt5 z

  ".,s%i .k #1<n],f(t;i^@#")

    .f'(t;i^@#@#").,d;i"t,

": ,f(t) .k f@(.f(t), .y(t)@) & t;i^@# &

t;i^@#@# >e bo? 2t












""=;;;                             a#bhd

  !.5,c "<x9#b "- y9#b"> dx

    "7 !5#j9#a

    .<"<#a "6 t">9#b "- t9#d.> dt

    "7 #cb/ae1

  !.5,c "<x9#b "- y9#b"> dy

    "7 !5#j9#a

    .<"<#a "6 t">9#b "- t9#d.>#bt dt

    "7 #b#a/b4

""=;

  ,x is logically easi] to prove ,,ii

f/1 = ,i is an imm 3sequ;e ( ,,ii4 ,to

prove ,,ii1 "o notes t ! sum

;;;,.s f"<x5i9"91 y5i9"9"> ,.d5ix; c 2

writt5 z

  ;;;,.s.5<i"7#a>.9n

    f.<.f"<t5#a9"9">1 .y"<t5#a9"9">.>

    (,.d5ix./,.d5it),.d5it4;

,n[ ;;;,.d5ix "7 x5i "- x5<i"-#a>

"7 .f7"<t5i9<"9"9>">,.d5it; by ! ,law (

! ,m1n4 ,h;e ! sum c 2 writt5 z

  ;;;,.s.5<i"7#a>.9n ,f"<t5i9"9">

    .f7"<t5i9<"9"9>"> ,.d5it1;

": ,f"<t"> "7 f.<.f"<t">1 .y"<t">.> &

;;t5i9"9 & ;;t5i9<"9"9> >e bo? 2t   #abe




t;i-1 & t;i_4 ,x is easily %[n     b#bhd

@(see ,,cla1 ,sec;n #12-25@) t ? sum

approa*es z limit ! 9tegral

  !;h^k",f(t).f'(t)dt

    .k !;h^k"f@(.f(t), .y(t)@).f'(t)dt

z requir$4 ,=mula (5.5) is prov$ 9 !

same way4

  ,we rem>k t ! value (a l9e 9tegral on

;,c does n dep5d on ! "picul>

p>ametriz,n ( ;,c, b only on ! ord] 9 :

! po9ts ( ;,c >e trac$4 (,see ,pro#m

#5_4)

  ,9 _m applic,ns ! pa? ;,c is n xf

smoo? b is -pos$ (a f9ite numb] ( >cs1

ea* ( : is smoo?4 ,?us ;,c mi<t 2 a

brok5 l9e4 ,9 ? case1 ;,c is t]m$

.piecewise smoo?4 ,! l9e 9tegral al;g

;,c is simply1 0def9i;n1 ! sum (!

9tegrals al;g ! pieces4 ,"o v]ifies at

once t (5.2), (5.3), &! !orems ;,i &

,,ii 3t9ue 6hold4 ,9 (5.4) & (5.5) !

func;ns .f'(t) & .y'(t) w h jump

4cont9uities1 : w n 9t]f]e )! exi/;e (!

9tegral (cf4 ,sec;n






;;t5<i"-#a> & t;5i4 ,x is easily   b#bhd

%[n .<see ,,cla1 ,sec;n #ab-#be.> t ?

sum approa*es z limit ! 9tegral

  ;;;!5h9k ,f"<t">.f7"<t"> dt

    "7 !5h9k f.<.f"<t">1 .y"<t">.>

    .f7"<t"> dt;

z requir$4 ,=mula "<#e4e"> is prov$ 9 !

same way4

  ,we rem>k t ! value ( a l9e 9tegral on

;,c does n dep5d on ! "picul>

p>ametriza;n ( ;,c1 b only on ! ord] 9 :

! po9ts ( ;,c >e trac$4 "<,see ,problem

#e4">

  ,9 _m applica;ns ! pa? ;,c is n xf

smoo? b is compos$ ( a f9ite numb] (

>cs1 ea* ( : is smoo?4 ,?us ;,c mi<t 2 a

brok5 l9e4 ,9 ? case1 ;,c is t]m$

.1piecewise smoo?4 ,! l9e 9tegral al;g

;,c is simply1 by def9i;n1 ! sum ( !

9tegrals al;g ! pieces4 ,"o v]ifies at

once t "<#e4b">1 "<#e4c">1 & ! !orems ,i

& ,,ii 3t9ue to hold4 ,9 "<#e4d"> &

"<#e4e"> ! func;ns .f;7"<t"> & .y;7"<t">

w h jump 4cont9uities1 : w n 9t]f]e ) !

exi/;e ( ! 9tegral "<cf4 ,sec;n     #abg




#4.1)_4 ..,"?\t ? book all pa?s    c#bhd

( 9tegr,n = l9e 9tegrals w 2 piecewise

smoo? un.s o!rwise .specifi$4

  ,if ! curve ;,c is repres5t$ 9 ! =m

  y .k g(x), a "k.k x "k.k b,

!n "o c reg>d ;x xf z p>amet]1 replac+

;t_2 t is1 ;,c is giv5 0! equ,ns

  x .k x, y .k g(x), a "k.k x "k.k b

9 t]ms (! p>amet] ;x_4 ,if ! direc;n (

;,c is t ( 9cr1s+ ;x, (5.4) &

------------------------------------#bhe

(5.5) 2come

  (5.6) "!%,c]f(x, y)dx

    .k !;a^b"f@(x, g(x)@)dx,

  (5.7) "!%,c]f(x, y)dy

    .k !;a^b"f@(x, g(x)@)g'(x)dx_4

,! ord9>y def9ite 9tegral !;a^b"ydx, ":

y .k g(x), is a special case ( (5.6)_4

  ,simil>ly1 if ;,c is repres5t$ 9 ! =m

  x .k ,f(y), c "k.k y "k.k d,

&! direc;n ( ;,c is t ( 9cr1s+ ;y, !n












#d4a">4 .7,"?\t ? book all pa?s    c#bhd

( 9tegra;n = l9e 9tegrals w 2 piecewise

smoo? un.s o!rwise specifi$4.

  ,if ! curve ;,c is repres5t$ 9 ! =m

  ;;;y "7 g"<x">1 a _@< x _@< b1;

!n "o c reg>d ;x xf z p>amet]1 replac+

;t2 t is1 ;,c is giv5 by ! equa;ns

  ;;;x "7 x1 y "7 g"<x">1 a _@< x _@< b;

9 t]ms ( ! p>amet] ;x4 ,if ! direc;n (

;,c is t ( 9cr1s+ ;x1 "<#e4d"> &

------------------------------------#bhe

"<#e4e"> 2come

""=;;;

  "<#e4f"> !.5,c f"<x1 y"> dx

    "7 !5a9b f.<x1 g"<x">.> dx1

  "<#e4g"> !.5,c f"<x1 y"> dy

    "7 !5a9b f.<x1 g"<x">.>g7"<x"> dx4

""=;

,! ord9>y def9ite 9tegral ;;!5a9b ;y dx1

": ;y "7 g"<x">1 is a special case (

"<#e4f">4

  ,simil>ly1 if ;,c is repres5t$ 9 ! =m

  ;;;x "7 ,f"<y">1 c _@< y _@< d1;

& ! direc;n ( ;,c is t ( 9cr1s+ ;y1 !n

                                    #abi




  (5.8) "!%,c]f(x, y)dx            a#bhe

    .k !;c^d"f@(,f(y), y@),f'(y)dy,

  (5.9) "!%,c]f(x, y)dy

    .k !;c^d"f@(,f(y), y@)dy_4

  ,9 mo/ applic,ns ! l9e 9tegrals appe>

z a -b9,n1

  "!%,c],p(x, y)dx+"!%,c],q(x, y)dy,

: is a2reviat$ z foll[s3

  "!%,c]@(,p(x, y)dx+,q(x, y)dy@)

or

  "!%,c],p(x, y)dx+,q(x, y)dy,

! brackets 2+ us$ only :5 nec4

  ,9 ! =mulas ?us f> ! direc;n ( ;,c has

be5 t ( 9cr1s+ p>amet]4 ,if ! opposite

direc;n is *os51 upp] & l[] limits >e

rev]s$ on all 9tegrals4 ,?us (5.4)

2comes

  (5.4') "!%,c]f(x, y)dx

    .k !;k^h"f@(.f(t), .y(t)@).f'(t)dt_4
















""=;;;                             a#bhe

  "<#e4h"> !.5,c f"<x1 y"> dx

    "7 !5c9d f.<,f"<y">1 y.>,f7"<y"> dy1

  "<#e4i"> !.5,c f"<x1 y"> dy

    "7 !5c9d f.<,f"<y">1 y.> dy4

""=;

  ,9 mo/ applica;ns ! l9e 9tegrals appe>

z a comb9a;n1

  ;;;!.5,c ,p"<x1 y"> dx

    "6 !.5,c ,q"<x1 y"> dy1;

: is a2reviat$ z foll[s3

  ;;;!.5,c .<,p"<x1 y"> dx

    "6 ,q"<x1 y"> dy.>;

or

  ;;;!.5,c ,p"<x1 y"> dx

    "6 ,q"<x1 y"> dy1;

! brackets 2+ us$ only :5 nec4

  ,9 ! =mulas ?us f> ! direc;n ( ;,c has

be5 t ( 9cr1s+ p>amet]4 ,if ! opposite

direc;n is *os51 upp] & l[] limits >e

rev]s$ on all 9tegrals4 ,?us "<#e4d">

2comes

  ;;;"<#e4d7"> !.5,c f"<x1 y"> dx

    "7 !5k9h f.<.f"<t">1 .y"<t">.>

    .f7"<t"> dt4;                   #aca




,! l9e 9tegral is "!=e multipli$   b#bhe

by -#1_4 ,(t5 x is 3v5i5t 6specify ! pa?

0xs equ,ns 9 "s =m & 69dicate ! direc;n

0us+ ! 9itial & t]m9al po9ts z l[] &

upp] limits3

  "!%,c];,a^,b",pdx+,qdy

or

  "!%,c];(x;;1;[y;;1;)^(x^;2^[y^;2^)

    ",pdx+,qdy_4

,x w 2 se5 lat] t "u c]ta9 3di;ns1 "o

ne$s only prescribe 9itial & t]m9al

po9ts3

  !;,a^,b",pdx+,qdy_4



  ,,example #1 ,6evaluate

  "!%,c];(1[0)^(-1[0)"(x^3"-y^3")dy,

------------------------------------#bhf

": ;,c is ! semicircle y .k >1-x^2"] %[n

9 ,fig4 #5.5, "o c repres5t ;,c

p>ametric,y3

  x .k cos t, y .k sin t,

    #0 "k.k t "k.k .p,










,! l9e 9tegral is "!=e multipli$   b#bhe

by "-#a4 ,(t5 x is 3v5i5t to specify !

pa? by xs equa;ns 9 "s =m & to 9dicate !

direc;n by us+ ! 9itial & t]m9al po9ts z

l[] & upp] limits3

  ;;;!.5,c5,a9,b ,p dx "6 ,q dy;

or

""=;;;

  !.5,c5<"<x5#a1y5#a">>9<"<x5#b1y5#b">>

    ,p dx "6 ,q dy4

""=;

,x w 2 se5 lat] t "u c]ta9 3di;ns1 "o

ne$s only prescribe 9itial & t]m9al

po9ts3

  ;;;!5,a9,b ,p dx "6 ,q dy4;



  ,,example #a ,to evaluate

  ;;;!.5,c5<"<#a1#j">>9<"<"-#a1#j">>

    "<x9#c "- y9#c"> dy1;

------------------------------------#bhf

": ;,c is ! semicircle

;;;y "7 %#a "- x9#b+; %[n 9 ,fig4 #e4e1

"o c repres5t ;,c p>ametrically3

  ;;;x "7 cos t1 y "7 sin t1

    #j _@< t _@< .p1;               #acc




&! 9tegral 2comes                  a#bhf

  !;0^.p"(cos^3 t-sin^3 t)cos tdt

    .k ?3.p/8#_4

,"o c use ;x z p>amet]1 &! 9tegral

2comes

  !;1^-1"@(x^3"(1-x^2")^?3/2#"@)

    ?-x/>1-x^2"]#dx_2

? is cle>ly 9 a m awkw>d =m = 9tegr,n4

,! sub/itu;n x .k cos t br+s "o back 6!

p>ametric =m4 ,"o c use ;y z p>amet] b

has !n 6split ! 9tegral 96two "ps1 f

(1, 0) to (0, 1) & f (0, 1) to (-1, 0)_2

  !;0^1"@((1-y^2")^?3/2#"-y^3"@)dy

    +!;1^0"@(-(1-y^2")^?3/2#"-y^3"@)dy

    .k #2!;0^1"(1-y^2")^?3/2#"dy_4

,note that x .k >1-y^2"] on ! f/ "p (!

pa? & x .k ->1-y^2"] on ! second "p4 $_4




















& ! 9tegral 2comes                 a#bhf

  ;;;!5#j9.p

    "<cos9#c t "- sin9#c t">cos t dt

    "7 (#c.p./#h)4;

,"o c use ;x z p>amet]1 & ! 9tegral

2comes

  ;;;!5#a9<"-#a>

    .<x9#c"<#a "- x9#b">9#c/b.>

    ("-x./%#a "- x9#b+) dx2;

? is cle>ly 9 a m awkw>d =m = 9tegra;n4

,! sub/itu;n ;x "7 cos ;t br+s "o back

to ! p>ametric =m4 ,"o c use ;y z

p>amet] b has !n to split ! 9tegral 9to

two "ps1 f "<#a1 #j"> to "<#j1 #a"> & f

"<#j1 #a"> to "<"-#a1 #j">2

  ;;;!5#j9#a

    .<"<#a "- y9#b">9#c/b "- y9#c.> dy

    "6 !5#a9#j

    .<"-"<#a "- y9#b">9#c/b "- y9#c.> dy

    "7 #b!5#j9#a "<#a "- y9#b">9#c/b

    dy4;

,note t ;;;x "7 %#a "- y9#b+; on ! f/ "p

( ! pa? & ;;;x "7 "-%#a "- y9#b+; on !

second "p4 _$#d

                                    #ace




  ,,example #2 ,let ;,c 2 !        b#bhf

p>abolic >c y .k x^2 f (0, 0) to (-1,

1)_4 ,!n

  "!%,c]xy^2"dx+x^2"ydy

    .k !;0^-1"(xy^2"+x^2"y?dy/dx#)dx

    .k !;0^-1"(x^5"+2x^5")dx

    .k ?1/2#_4 $_4



  ,if ;,c is a .clos$ curve1 !n "! is no

ne$ 6specify 9itial & t]m9al po9t1 ?\< !

direc;n m/ 2 9dicat$4 ,if ;,c is a

simple clos$ curve (trac$ j once), !n "o

ne$ only specify : (! two possi#

direc;ns is *os54 ,! not,ns

  (a) !@$c$59o],pdx+,qdy,

  (b) !@$c$[59],pdx+,qdy

ref] 6! two cases ( ,figs4 #5.6(a) &

#5.6(b)_4 ,! c.t]clockwise >r[ ref]s

6:at is r\<ly a c.t]clockwise direc;n on

;,c_2 ? w 2 t]m$ ! .positive direc;n (as

= angul> m1sure)_2 ! clockwise direc;n w

2 call$










  ,,example #b ,let ;,c 2 !        b#bhf

p>abolic >c ;y "7 x;9#b f "<#j1 #j"> to

"<"-#a1 #a">4 ,!n

  ;;;!.5,c xy9#b dx "6 x9#by dy

    "7 !5#j9<"-#a>

    "<xy9#b "6 x9#by(dy./dx)"> dx

    "7 !5#j9<"-#a> "<x9#e "6 #bx9#e"> dx

    "7 #a/b4 _$#d;



  ,if ;,c is a .1clos$ curve1 !n "! is

no ne$ to specify 9itial & t]m9al po9t1

?\< ! direc;n m/ 2 9dicat$4 ,if ;,c is a

simple clos$ curve "<trac$ j once">1 !n

"o ne$ only specify : ( ! two possible

direc;ns is *os54 ,! nota;ns

""=;;;

  "<a"> !&@$cc ,p dx "6 ,q dy1

  "<b"> !&@$cl ,p dx "6 ,q dy

""=;

ref] to ! two cases ( ,figs4 #e4f"<a"> &

#e4f"<b">4 ,! c.t]clockwise >r[ ref]s to

:at is r\<ly a c.t]clockwise direc;n on

;,c2 ? w 2 t]m$ ! .1positive direc;n "<z

= angul> m1sure">2 ! clockwise direc;n w

2 call$                             #acg




! .negative direc;n4 ,x %d 2 not$   #bhg

t ! direc;n c 2 specifi$ 0ref];e 6! unit

tang5t vector _;,t 9 ! direc;n ( 9tegr,n

&! unit normal vector _;n t po9ts 6!

\tside (! region b.d$ by ;,c_2 =!

positive direc;n1 _;n is #90^.* 2h _;,t,

z 9 ,fig4 #5.6(a)_2 =! negative direc;n1

_;n is #90^.* ah1d ( _;,t z 9

,fig4 #5.6(b)_4



  ,,example #3 ,6evaluate

  "!@$c$59o]%,c]y^2"dx+x^2"dy,

": ;,c is ! triangle ) v]tices (1, 0),

(1, 1), (0, 0), %[n 9 ,fig4 #5.7, "o has

6-pute ?ree 9tegrals4 ,! f/ is ! 9tegral

f (0, 0) to (1, 0)_2 al;g ? pa?1 y .k #0

&1 if ;x is ! p>amet]1 dy .k #0_4 ,h;e !

f/ 9tegral is #0_4 ,! second 9tegral is

t f (1, 0) to (1, 1)_2 if ;y is us$ z

p>amet]1 ? reduces to

  !;0^1"dy .k #1,

s9ce dx .k #0_4 ,=! ?ird 9tegral1










! .1negative direc;n4 ,x %d 2       #bhg

not$ t ! direc;n c 2 specifi$ by ref];e

to ! unit tang5t vector ^2;,t 9 !

direc;n ( 9tegra;n & ! unit normal

vector ^2;n t po9ts to ! \tside ( !

region b.d$ by ;,c2 = ! positive

direc;n1 ^2;n is #ij^j 2h ^2;,t1 z 9

,fig4 #e4f"<a">2 = ! negative direc;n1

^2;n is #ij^j ah1d ( ^2;,t z 9

,fig4 #e4f"<b">4



  ,,example #c ,to evaluate

  ;;;!&@$cc:.5,c y9#b dx "6 x9#b dy1;

": ;,c is ! triangle ) v]tices

"<#a1 #j">1 "<#a1 #a">1 "<#j1 #j">1 %[n

9 ,fig4 #e4g1 "o has to compute ?ree

9tegrals4 ,! f/ is ! 9tegral f

"<#j1 #j"> to "<#a1 #j">2 al;g ? pa?1

;y "7 #j &1 if ;x is ! p>amet]1

dy "7 #j4 ,h;e ! f/ 9tegral is #j4 ,!

second 9tegral is t f "<#a1 #j"> to

"<#a1 #a">2 if ;y is us$ z p>amet]1 ?

reduces to

  ;;;!5#j9#a dy "7 #a1;

s9ce dx "7 #j4 ,= ! ?ird 9tegral1   #aci




f (1, 1) to (0, 0), ;x c 2 us$ z   a#bhg

p>amet]1 s t ! 9tegral is

  !;1^0"2x^2"dx .k -?2/3#,

------------------------------------#bhh

s9ce dy .k dx_4 ,?us f9,y

  "!@$c$59o]%,c]y^2"dx+x^2"dy

    .k #0+1-?2/3# .k ?1/3#_4 $_4



     #5.3 ,,9tegrals ,,) ,,respect

        ,,6,,>c ,,l5g?--,,basic

    ,,prop]ties ,,( ,,l9e ,,9tegrals



  ,=a smoo? or piecewise smoo? pa? ;,c,

z 9 ! prec$+ sec;n1 >c l5g? ;s is well

def9$4 ,?us ;s c 2 def9$ z ! 4t.e

trav]s$ f ! 9itial po9t (t .k h) up 6a

g5]al ;t_3

  (5.10) s

    .k !;h^t">(?dx/dt#)^2"+(?dy/dt#)^2"]

    dt_4

,if ! curve ;,c is direct$ ) 9cr1s+ ;t,

!n ;s al 9cr1ses 9 ! direc;n ( mo;n1 go+

f #0 up 6! l5g? ;,l ( ;,c_4 ,let ;,c 2

subdivid$ z 9 ,fig4 #5.4 & let






f "<#a1 #a"> to "<#j1 #j">1 ;x c   a#bhg

2 us$ z p>amet]1 s t ! 9tegral is

  ;;;!5#a9#j #bx9#b dx "7 "-#b/c1;

------------------------------------#bhh

s9ce dy "7 dx4 ,?us f9ally

  ;;;!&@$cc:.5,c y9#b dx "6 x9#b dy

    "7 #j "6 #a "- #b/c "7 #a/c4 _$#d;



       #e4c ,,,9tegrals ) respect

          to >c l5g? ,- basic

       prop]ties ( l9e 9tegrals,



,= a smoo? or piecewise smoo? pa? ;,c1 z

9 ! prec$+ sec;n1 >c l5g? ;s is well

def9$4 ,?us ;s c 2 def9$ z ! 4t.e

trav]s$ f ! 9itial po9t "<;t "7 ;h"> up

to a g5]al ;t3

  ;;;"<#e4aj"> s

    "7 !5h9t

    %"<(dx./dt)">9#b "6 "<(dy./dt)">9#b+

    dt4;

,if ! curve ;,c is direct$ ) 9cr1s+ ;t1

!n ;s al 9cr1ses 9 ! direc;n ( mo;n1 go+

f #j up to ! l5g? ;,l ( ;,c4 ,let ;,c 2

subdivid$ z 9 ,fig4 #e4d & let      #ada




.,d;i"s denote ! 9cre;t 9 ;s f     a#bhh

t;i-1 to t;i, t is1 ! 4t.e mov$ 9 ?

9t]val4 ,"o !n makes ! def9i;n

  (5.11) "!%,c]f(x, y)ds

    .k "lim%n $o ,=%%max .,d;i"s $o #0]

    ".,s%i .k #1<n]f(x;i^@#, y;i^@#")

    .,d;i"s_4

,if ;f is 3t9u\s on ;,c, ? 9tegral w

exi/ & c 2 evaluat$ z foll[s3

  (5.12) "!%,c]f(x, y)ds

    .k !;h^k"f@(.f(t), .y(t)@)

    >.f'(t)^2"+.y'(t)^2"]dt_4

,? is prov$ 9 ! same way z (5.4) &

(5.5), )! aid (! =mula

  ?ds/dt#

    .k >(?dx/dt#)^2"+(?dy/dt#)^2"]

    .k >.f'(t)^2"+.y'(t)^2"]_4

  ,"o c 9 pr9ciple use ;s xf z ! p>amet]

on ! curve ;,c_2 if ? is d"o1 ;x & ;y

2come func;ns (

;s_3 x .k x(s), y .k y(s)_4 ,! po9t

@(x(s), y(s)@) is !n ! posi;n (! mov+

po9t af a 4t.e ;s has be5 trav]s$4 ,9 ?

case1 (5.11) reduces 6a






,.d;5is denote ! 9cre;t 9 ;s f     a#bhh

;;t5<i"-#a> to t;5i1 t is1 ! 4t.e mov$ 9

? 9t]val4 ,"o !n makes ! def9i;n

  ;;;"<#e4aa"> !.5,c f"<x1 y"> ds

    "7 lim.5<n\o#=>.5<max ,.d5is\o#j>

    ,.s.5<i"7#a>.9n f"<x5i9"91 y5i9"9">

    ,.d5is4;

,if ;f is 3t9u\s on ;,c1 ? 9tegral w

exi/ & c 2 evaluat$ z foll[s3

  ;;;"<#e4ab"> !.5,c f"<x1 y"> ds

    "7 !5h9k f.<.f"<t">1 .y"<t">.>

    %.f7"<t">9#b "6 .y7"<t">9#b+ dt4;

,? is prov$ 9 ! same way z "<#e4d"> &

"<#e4e">1 ) ! aid ( ! =mula

  ;;;(ds./dt)

    "7 %"<(dx./dt)">9#b

    "6 "<(dy./dt)">9#b+

    "7 %.f7"<t">9#b "6 .y7"<t">9#b+4;

  ,"o c 9 pr9ciple use ;s xf z ! p>amet]

on ! curve ;,c2 if ? is d"o1 ;x & ;y

2come func;ns (

;s3 ;x "7 x"<s">1 ;y "7 y"<s">4 ,! po9t

.<x"<s">1 y"<s">.> is !n ! posi;n ( !

mov+ po9t af a 4t.e ;s has be5 trav]s$4

,9 ? case1 "<#e4aa"> reduces to a   #adc




def9ite 9tegral ) respect to       b#bhh

;s_3

  (5.13) "!%,c]f(x, y)ds

    .k !;0^,l"f@(x(s), y(s)@)ds_4

,if ;x is us$ z p>amet]1 "o has

  (5.14) "!%,c]f(x, y)ds

    .k !;a^b"f@(x, y(x)@)

    >1+(?dy/dx#)^2"]dx_2

"! is an analog\s =mula = ;y_4



      ,,5d ,,( ,,calculus ,,sample

           ,,9 ,,neme? ,,code






























def9ite 9tegral ) respect to ;s3   b#bhh

  ;;;"<#e4ac"> !.5,c f"<x1 y"> ds

    "7 !5#j9,l f.<x"<s">1 y"<s">.> ds4;

,if ;x is us$ z p>amet]1 "o has

  ;;;"<#e4ad"> !.5,c f"<x1 y"> ds

    "7 !5a9b f.<x1 y"<x">.>

    %#a "6 "<(dy./dx)">9#b+ dx2;

"! is an analog\s =mula = ;y4



    ,,,5d ( calculus sample 9 uebc,



          ,,5d ,,( ,,volume #a

























                                    #ade


ICEB contact information
ICEB home page